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The research has been carried out simultaneously on three aspects of aircraft wings

tructural tailoring and modern control of thin-walled model of composite aircraft wings.
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Integrated structural design and vibration control by multiobjective optimization.
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Abstract

The research has been carried out simultaneously on three aspects of aircraft wings

performance optimization, as follows:

i. Structural tailoring and modern control of thin-walled model of composite aircraft wings.

ii. Structural tailoring of a. low-aspect ratio plate model of composite aircraft wings.

iii. Integrated structural design and vibration control by multiobjective optimization.

Significant progress has been made on all fronts.
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Introduction

Thé tesearch can be divided into the following areas:

i. Structural tailoring and modern control of thin-walled model of composite aircraft wings.
ii. Structural tailoring of a low-aspect ratio plate model of composite aircraft wings.
iii. Integrated structural design and vibration control by multiobjective optimization.

Five technical papers have resulted from the research. The research is reported according
to these papers. _

1. Refined Structural Modeling For Enhancing Vibrational and Aeroelastic Characteristics
of Composite Aircraft Wings, L. Librescu, L. Meirovitch and O. Song*

An analytical study, including tailoring, of the vibrational and static aeroelastic response
characteristics of anisotropic composite aircraft wings in the form of thin-walled beams is pre-
sented. The theoretical analysis and numerical results encompass effects such as transverse
shear flexibility exhibited by the advanced composite materials, warping restraint charac-
terizing cantilevered structures, elastic anisotropy and induced structural couplings. The
complex effects of these factors are highlighted and the power of the tailoring technique
toward enhancing the dynamic and static structural characteristics is demonstrated.

The paper has been presented at the AIAA/ASME/ASCE/AHS/ASC 34th Structures, |
Structural Dynamics, and Materials Conference, La Jolla, CA, April 19-22, 1993, and has
been accepted for publication in the journal La Recherche Aérospatiale. A copy of the paper
is enclosed.

2. Integrated Structural Tailoring and Adaptive Control for Advanced Aircraft Wings, L. Li-
brescu, L. Meirovitch and O. Song*

This paper presents an integrated approach combining structural tailoring with the con-
verse piezoelectric effect for the purpose of actively controlling the vibration and static
aeroelastic characteristics of advanced aircraft wings. The structural model incorporating
a number of nonclassical features consists of a thin/thick-walled closed cross section can-

tilevered beam whose constituent layers exhibit elastic anisotropic properties. In addition,

* The authors are listed in alphabetical order.
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a system of piezoelectric actuators bonded to, or embedded into the structure generates a
the static and dynamic characteristics of the structure. Results reveal that a combination
of both techniques can play a major role in enhancing the vibrational and static aeroelastic

response characteristics of aircraft wings.

The paper has been presented at the AIAA/ASME/ASCE/AHS/ACS 34th Structures,
Structural Dynamics, and Materials Conference, La Jolla, CA, April 19-22, 1993, and is
being considered for publication in Journal of Aircraft. A copy of the paper is encloséd.

3. Structural Modeling of Low-Aspect Ratio Composite Wings, L. Meirovitch and T.J. Seitz

This paper is c;mcerned with the aeroelastic tailoring of a structural model consisting
of a rigid fuselage and a low-aspect ratio wing made of composite materials. The wing is
modeled as a trapezoidal plate with root and tip chords parallel to the flow and with general
sweep. The fuselage is capable of plunge and pitch and the elastic wing model includes shear
deformations but ignores rotatory inertia.

The paper has been presented at the ATAA/ASME/ASCE/AHS/ACS 34th Structures,
Structural Dynamics, and Materials Conference, La Jolla, CA, April 19-22, 1993, and has
been tentatively accepted for publication in Journal of Aircraft. A copy of the paper is
enclosed.

4. Integrated Structural Design and Vibration Suppression Using Independent Modal Space

Control, R. A. Canfield and L. Meirovitch

The integrated design of a structure and its control system is treated as a multiobjective
optimization problem. Structural mass and a quadratic performance index constitute the
vector objective function. The closed-loop performance index is taken as the time integral
of the Hamiltonian. Constraints on natural frequencies, closed-loop damping, and actuator
forces are also considered. Derivatives of the objective and constraint functions with respect
to structural and control design variables are derived for a finite element beam model of
the structure and constant feedback gains determined by independent modal space control.
Pareto optimal designs generated for a simple beam demonstrate the benefit of solving the
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integrated structural and control optimization problem.

The paper has been presented at the AJAA/ASME/ASCE/AHS/ACS 34th Structures,
Structural Dynamics, and Materials Conference, La Jolla, CA, April 19-22, 1993, and has
appeared in AJTAA ‘Journal, Vol. 32, No. 10, 1994, pp. 2053-2060. A copy of the paper is
enclosed.

5. Vibration and Static Aeroelastic Instability of Nonuniform, Thin-Walled Beam Compos-
ite Wings, L. Librescu, L. Meirovitch and O. Song*

The equations of motion for a nonuniform, anisotropic thin-walled beam are derived
and applied to the study of vibration and static aeroelastic instability of slender tapered
aircraft wings made of advanced composite materials. Numerical results illustrate the effects
of anisotropy, transverse shear flexibility, primary and secondary warping, as well as of wing
taper ratio, and the implications of these effects on the vibrational and divergence instability .
characteristics are discussed.

The paper has been presented at the AIAA/ASME/ASCE/AHS/ACS 35th Structures,
Structural Dynamiqs, and Materials Conference, Hilton Head, SC, April 16-20, 1994, and is
currently being revised for submission for publication in AJAA Journal. A copy of the paper

is enclosed.

* The authors are listed in alphabetical order.
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Refined Structural Modeling For Enhanced Vibrational

- and Aeroelastic Characteristics of Composite Aircraft Wings

L. Librescu, L. Meirovitch and O. Song*

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061, USA

Abstract An analytical study focusing on the vibrational and static aeroelastic response of
anisotropic composite aircraft wings modeled as thin-walled beams is presented. The -
theoretical analysis and numerical results encompass effects such as transverse shear
flexibility exhibited by the advanced composite materials, warping restraint charac-
terizing cantilevered structures, elastic anisotropy and induced structural couplings.
The complex effects of these factors are highlighted and the power of the tailor-
ing technique toward enhancing the dynamic and static structural characteristics is
demonstrated.

Keywords: Composite materials - Vibration - Static aeroelasticity - Tailoring -
Transverse shear flexibility - Warping restraint - Structural couplings

Résumé

* The authors are listed in alphabetical order.




I1-INTRODUCTION

With the advent of high-performance composite materials, thick- and thin-walled beam -
structures made of fiber reinforced laminated composites are likely to play an increasing role
in the design of aircraft wings. In addition, the ability to tailor the structural characteristics
argues for extensive use of composite materials in these structures. The various elastic
and structural couplings resulting from directional properties of fiber-reinforced composite
materials and of ply-stacking sequence can be exploited successfully to enhance the response
characteristics of flight vehicles. However, extensive use of these potential benefits can be

achieved only if the effects induced by these couplings are well understood.

It is clear that, for an accurate prediction of flight vehicle response characteristics,
comprehensive structural models must be developed. It is also clear that, in addition to this
requirement, more powerful analytical tools than those currently available are needed for

accurate prediction of structural response under complex static and dynamic excitations.

The present paper is devoted to the development of the structural theories and ana-
lytical techniques capable of treating the above problem. To this end, a refined dynamical
model of laminated composite thin-/thick-walled beams of arbitrary closed cross section in-
corporating a number of nonclassical features is developed. In this connection, a ply-angle
scheme generating the most favorable structural coupling for the problem at hand is imple-
mented. Then, the vibrational and static aeroelastic behavior of composite swept-wings is

studied and the influence of various factors on the response characteristics is demonstrated.

Two methods of solution for the problem at hand were explored and proved to be
extremely efficient. An exact one, based on the Laplace transform technique in the spatial
domain, and an approximate one, referred to as the extended Galerkin method, yielding
numerical results in excellent agreement with the first. The analytical developments in this -
paper are general in the sense that they are valid for arbitrary beam cross sections. However,
for illustration purposes, a biconvex profile typical of supersonic wing airplanes is adopted.

It should be remarked that, due to the incorporation of transverse shear, the ensuing
beam theory is perfectly applicable to both thin- and thick-walled beams, in the sense of
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hmaz/bS 0.1, respectively, where hy,,, denotes the maximum thickness of the wall and b a
typical cross-sectional dimension. Although the theory is applicable to thick-walled beams
as well, the standard terminology of thin-walled beams is used throughout. It should be
stressed here that the necessity of incorporating transverse sheer effects arises not only from
the fact that composite beams tend to be thicker than the standard metallic counterpart,
but also from the fact that advanced fiber composite materials exhibit high flexibilities in
transverse shear.

It should be emphasized here that the model of composite aircraft wings almost uni-
versally used to date has been the simple solid beam [1]. Hence, the composite thin-walled
beam model developed and used in this paper represents a significant advance in the state of
the art as it permits not only the incorporation of effects not accounted for previously, but
also enables one to treat a number of important problems of wing structures using a more

refined structural model.
II - BASIC ASSUMPTIONS

This study uses the structural concept of single-cell, thin-walled beams of arbitrary
cross-section. Pertinent quantities are referred to a global coordinate system zyz, where z
and y denote the cross-sectional coordinates and z is the spanwise coordinate (Fig. 1la). The
theory is based on the following assumptions: i) beam cross-sections do not deform in their
own planes, ii) transverse shear effects are significant, iii) the twist varies along the span, i.e., -
the rate of twist d¢/dz is no longer assumed to be constant (as in the Saint-Venant torsional
model) but a function of the spanwise coordinate, where ¢' = d¢/dz constitutes a measure
of the torsion-related nonuniform warping, iv) primary and secondary warping effects are
sufficiently important to be included. (The first one is related to the warping displacement
of points on the midline cross section and the second one is related to points off the midline
contour.) and v) in the absense of an internal pressure field, the hoop stress resultant is

negligibly small compared to the remaining stresses.
IIT - KINEMATICAL EQUATIONS
Consistent with assumption iv), the primary warping function F,(s) is taken as [2-4]

3




where
_ $ra(3)ds 24,
V="4d B

denotes the torsional function, A, the cross-sectional area of the beam bounded by the

(2)

midline contour, s the arc-length measured along the circumferential coordinate, whose ori-
gin is arbitrarily but conveniently chosen, s is a dummy coordinate associated with the
s-coordinate, §(-)ds the integral along the closed midline contour, r,(s) = z(s)¢ + y(s)m a
geometric quantity (see Fig. 1b), where £ = cos(n, ), m = cos(n,y) denote direction cosines,
and B = § ds is the circumferential contour length.

In accordance with assumptions i) - iv), and in order to reduce the three-dimensional
elasticity theory of thin-walled beams to an equivalent one-dimensional one, the components

of the displacement vector are expressed as [4]

u(xay’z’t) =uo(z’t) - y¢(zvt)’ v(z,y,z,t) = vo(z,t) + z¢(z,t) (4a’ b)
w(z,y,2,t) =w(z,t) + 0;(2,1) [y(s) + nm)|
+0y(2,t) [2(s) + nb] = ¢'(2,2) [Fuu(s) + na(s)] (4¢)

In the above equation, F,(s) and na(s) play the role of primary and secondary warping func-
tions (see also [5]), respectively, where n denotes the coordinate in the thickness direction,

and

0:(z,t) = vyz(2,t) — v)(2,1), Oy(2,t) = Yz2(2,t) — ul(z,1), a(s) = —y(s)l + z(s)m (5a-c)

in which 8;(z,t) and 6,(z,t) denote the rotations about axes z and y, respectively, and
vyz and 7z, are the transverse shear strains in the planes yz and zz, respectively; we note
that primes denote derivatives with respect to z. When transverse shear effects are ignored,
§; — —vg and 6, — —up. In agreement with Eqs. (4), it can be readily verified that the
assumption of cross-sectional nondeformability, implying €z = 0, €4y = 0, and €zy = 0, or
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equivalently €,n, = €55 = €5n = 0, and the continuity requirement of w along the midline
contour, i.e., §(0w/0s)ds = 0, are fulfilled.

The quantities ug(z,t), vo(z,t) and wo(z,t), denoting the rigid-body translations along
the z,y and z axis, respectively, and 6:(2,t),0y(z,t) and ¢(z,t), denoting the rigid-body
rotations about the z- and y-axes and the twist about the z-axis, respectively, constitute the

variables of the problem.

IV - CONSTITUTIVE EQUATIONS

Consider the case of composite thin-walled beams consisting of a finite number N of ho-
mogeneous layers. It is assumed that the material of each constituent layer is linearly elastic |
and anisotropic and that the bonding between the layers is perfect. The three-dimensional

constitutive equations for a generally orthotropic elastic material can be expressed as

[(0ss] [@nn @1z Qi3 0 0 Qe[ €ss]
Oz Qiz2 Q22 Q23 0 0 Q|| ¢
Onn |_| Q13 Q23 Qa3 0 0 Q36| €nn (6)
Ozn 0 0 0 Q44 945 0 Yzn
Ons _0 _0 _0 Qa5 Qss _0 Tns
L5z L@ Q26 @3 0 0 Qeell sz

where Qij denote the transformed elastic coefficients associated with the kth layer in the
global coordinate system of the structure and vpr = 2¢pr, p # r and ¢;; denote the com-
ponents of the strain tensor. The three-dimensional dependence in Egs. (6) can be re-
duced to an equivalent one-dimensional dependence in two steps. The first step, yielding
the two-dimensional local constitutive equations, consists of the integration of the original -
three-dimensional form through the laminate thickness, while the second step, resulting in
the one-dimensional form, consists of the integration of the previous form of constitutive
equations along the midline contour of the beam cross section.

In light of assumptions i) and v), the local constitutive equations, expressed in terms

of the strain measures, become the equations for the membrane stress resultants

sz = Kufgz + K12:5'32 + K13¢I + K14egz (7(1)
Noz = K21€2, + K227s: + Koad' + Kaae?, (7b)
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transverse shear stress resultant

B} Nen = Agazn (8)

and stress couples
L.: = Ku€), + K127sz + Kaad' + Kusel, (9a)
Lz = Ksi€), + Ksa%s: + K53¢' + Ksae, (9%)

where Kj; denote the modified local stiffness coefficients, (see Appendix). Consistent with
Egs. (4) and (5), the strain components entering into the above constitutive equations are
€2z = €, + N€qpy Yoz = Yz + E;lsz and 7.5, where

€2, =wpy + x(s)% + y(s)0, — F.(s)¢", €, = 9;( +6.m — a(s)¢" (10a, b)
Foz = — (ug + Oy)m + (v + 62)L, ¥, = 2%5#, Yan = (g + 0y)¢ + (vg + 0z)m  (10c-e)

In the above equations, €2, and €}, denote the axial strain components associated with
the primary and secondary warping, respectively, 45, and %u stand for the tangential shear
strains of the beam midsurface induced by transverse shear and by twist, respectively, and 7.,
denotes the transverse shear strain component. The stress resultants, the stress couples and
the strain measures appearing in Egs. (7) - (9) exhibit a two-dimensional spatial dependence,

the dependence being on s- and z-coordinates. In the dynamical problem, they also depend

on time.

V - THE BOUNDARY-VALUE PROBLEM
The boundary-value problem, consisting of the differential equations and the boundary
conditions, can be derived conveniently by means of the extended Hamilton’s principle, which

can be stated as follows [6]:

t
/2(6T—6V+6W)dt=0, Sup = Svg = bwp = 60, = 60, = §p =0 at t = t1,8,  (11)
t

where T and V denote the kinetic energy and strain energy, respectively, while 6W is the

virtual work due to nonconservative forces. The kinetic energy has the form

N . . .
T = -;—/OL }4 ; p(k)[(izo _—l + (%0 + 28)" + { (o + ys + =b, — F.9)

k—1 7k
+n (Zéy +mb, — aé’)}z ] dndsdz (12)
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whereas the strain energy can be shown to have the expression

v [T ) (W,

+y0, — F,é" +n (@9; + mé), — a¢")] + Uglzc) [ - (ug + Hy) m

+ (vf) + 9;) £+ ZTI?C&] +ok) {(u{) + Hy) L+ (v6 + 0;) m] } dndsdz (13)

where L denotes the wing semispan. Moreover, the virtual work of the nonconservative forces

can be written as

I .
SW =/(; (pybvo + m,8¢)dz (14)

where py and m, denote the lift force per unit length and aerodynamic twist moment (positive
nose up) about the elastic axis.

Carrying out integrations with respect to n, s and ¢, we can write

1 1 L
6Tdt = — / [/ (I]&UO + Idvg + I3éwy
0 t 0

1 ()

+(Is = 1) 66 + 1566, + 160 dz — Isg

L
J (15)
0

where I; denote the inertia terms, given in the Appendix. Integration with respect to n and

s in Eq. (13) and consideration of Eqgs. (1), (5), (7) and (10), yields
L
§V = - /0 [Ti6wo + (M), - Q.) 60, + (ML — Q,) 66, + (B! + M.) 8¢
+Q56uo + Q) 6vo| dz + [T.6wo + My80y + M66, — B¢/
L
+ (BL + M) 66+ Qu6u0 + Qo) | (16)
where
T,(2,1) = f( Nizds, Qu(z,1) = }{ (=Nyym + Nyuf) ds
Qy(z,t) = }{ (Nygl + Nyumm) ds, My(z,t) = f (yN,; + Lyzm)ds
M,(z,t) = ]{(xsz +L.0), My(z,t) =2 f Niystbds
Bu(z,t) = ]{ [Fu(5)N,s + a(s) L] ds

(17a - g)

In Egs. (17),T;, @z and @y denote the axial force and shear forces in the z- and y- directions,
M., My and M, denote the moments about the z-, y- and z-axes, respectively, and B,
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denotes the bimoment. Introducing Eqgs. (14)-(16) into Eq. (11) and following the usual
steps [1], we obtain the boundary-value problem for the most general case of anisotropy. The
boundary-value problem consists of six differential equations of motion for the displacements
Ug, Vo, Wo, 07,0y and @, together with the corresponding boundary conditions. Such a set
exhibits complete coupling between the various modes, i.e., primary and secondary warping, -
vertical and lateral bending, twist and transverse shear. However, the principal goal of
structural tailoring lies in the appropriate selection of fiber orientation so as to produce
desired elastic couplings between certain modes. For the problem at hand, the induced
elastic couplings must play a decisive role in the enhancement of the free vibration and
aeroelastic response characteristics of wing structures. At the same time, the selected ply-
angle orientation should not generate undesired couplings, producing unwanted effects on
the response characteristics. In this sense, the bending-twist coupling is most important in
the design of aircraft wings. Its beneficial effects, demonstrated for the solid beam model
in [1}, will be considered here in the context of a thin-walled beam model. Additional
beneficial effects of this cross-coupling have been highlighted recently in [8]. The above
criteria for selecting fiber orientation, together with ease of implementation in design and

manufacturing, result in the ply-angle distribution

0(y) = —8(-v). (18)

This ply configuration is shown in Fig. 2. According to terminology used in [9], struc-
tures displaying this ply-angle distribution are said to exhibit circumferentially asymmetric
stiffness configuration.

In the case of the ply-angle distribution given by Eq. (18), the extended Hamilton’s
principle, Eq. (11), yields two independent boundary-value problems. The first boundary-
value problem is of eighth order and involves the coupling of the twist ¢, the vertical bending
vo and the flapwise transverse shear 6;. On the other hand, the second boundary-value is
of sixth order and involves the coupling of the extension wp, the lateral bending ug and
the chordwise transverse shear ;. The first boundary-value problem is governed by the
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differential equations of motion

—ags9"" + ar3bly — ags(vy +0;) +ar7¢” +m, = (bg + bs)p — (bro + b1s)¢”  (19a)

ass(vy +0;) + ased” + py = b1, (196)

a3l + azrd” — aes(vy + 0.,) — ased” = (by + b14)6; (19¢)

to be satisfied over 0 < z < L. For cantilevered thin-walled beams, the solution of Eqgs. (19)

must satisfy the boundary conditions
¢$=0,v=0,0=0,4=0 (20a-d)

at z =0 and

—aged’" + ar30, — ags(vg + 0,) + arrd’ = —(byo + big)d'
— — —_— (21a-d)

ass(v, + 0;) + ased” =0, a330, +azrd’ =0, aged” + ags(vy +0;) =0

at z = L. Note that singly and doubly underlined terms in Eqgs. (19)-(21) are associated
with the warping restraint and warping inertia effects, respectively.

The couplings exhibited by the second boundary-value problem are of no interest here, .
so that the problem will not be pursued any further.

The boundary-value problem associated with the bending-twist-transverse shear mo-
tions, Egs. (19)-(21), can be used to enhance the vibrational and aeroelastic response char-
acteristics of wing structures. It should be mentioned here that the stiffness terms a37 = a3
and ass = ag5 appearing in Eqs. (19) and (21) are responsible for the coupling between
bending and twist, with the effect of as¢ due to warping being much weaker than the effect
of a37 (see Fig. 11). It should be pointed out that deletion of the warping restraint results in
a reduction in the order of the boundary-value problem from eight to six, so that only three
boundary conditions must be satisfied at each end. On the other hand, if transverse shear
effects are ignored, then the order of the boundary-value problem is preserved. The stiffness
coefficients a;; and the inertia coefficients b; appearing in Eqs. (19) and (21) are displayed

in the Appendix.




VI - STRUCTURAL TAILORING FOR IMPROVED VIBRATION AND
STATIC AEROELASTIC RESPONSE

Static aeroelastic behavior, which includes both divergence instability and aeroelastic
lift distribution is an important consideration in the design of modern aircraft. The analysis
performed here addresses the problem of designing the wing so as to take advantage of
structural couplings from a static aeroelastic viewpoint. This is done by using the unique
directional properties of advanced composite materials. The same importance should be
afforded to the vibrational characteristics, which are basic to the dynamic response, flutter
instability and aeroservoelasticity studies of flight vehicles.

In the case of free vibration, the terms associated with the external loadings are omit-
ted. Moreover, for static aeroelastic problems, the inertia terms must be discarded from -
Egs. (19) and (21), and the only loading terms to be retained are the ones associated
with the aerodynamic lift py and the torsional aerodynamic moment m,. Using strip-theory

aerodynamics, we can write [10]

Py(z) =qncao(do + & — U:, tan A) — NW/QL (22a)

m,(2) =qncaoe(do + ¢ — v tan A) + quc?Carrac — NWd/2L (22b)

Here ¢, = %—pUﬁ denotes the dynamic pressure normal to the leading edge of the swept wing,
c the chord of the wing, a, the corrected lift curve slope coefficient, A the angle of sweep
(considered positive for swept-back), e the offset between the aerodynamic and reference
axis, ¢, the rigid angle of attack (measured in planes normal to the leading edge), Cprac the
wing section pitching moment coefficient (whose influence, as usual, is disregarded), W/2L
the wing weight per unit length and N the load factor normal to the wing surface, whose |
expression is

_ 2¢ gna, L

N = —w /. (do + ¢ — v, tan A)dz (23)

The static aeroelastic response is analyzed here both in the subcritical range, i.e.,
for the range of velocities ¢n < (gn)p, where (¢n)p denotes divergence dynamic pressure,
and in the critical case as well. As a general remark, Eqs. (22) reveal that for A < 0,
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i.e., for swept-forward wings, the aeroelastic bending-twist coupling results in an increase
in py(z) and m,(z), which in turn reduces dramatically the divergence speed, whereas for
A > 0, i.e., for swept-back wings, the opposite trend takes place. These two phenomena are
referred to as wash-in and wash-out [11], respectively. Whereas the goal of the subcritical
aeroelastic analysis consists of the determination of the distribution of the effective angle
of attack ¢.rs and of the lift force, as affected by the elastic deformations, the study of
the critical case involves the determination of divergence instability conditions. Clearly, the
main target of tailoring applied to swept-forward wing is to yield a decrease of the effective
angle of attack, and implicitly of the aeroelastic lift and, as a result, an increase of the
critical divergence speed. Whereas the study of the subcritical static aeroelastic response
requires the solution of an integral-differential system of equations, obtained by inserting
Eqgs. (22) and (23) into Eqgs. (19), the determination of the divergence speed leads to the
solution of an eigenvalue problem, where the divergence speed plays the role of eigenvalue.
Structural tailoring applied to the vibration of wing structures must result in an increase
in the eigenfrequencies without weight penalties. To determine the natural frequencies, one

must solve an eigenvalue problem.

In spite of the mathematical complexities involved, the two previously mentioned solu-
tion techniques used here proved to be extremely powerful, as demonstrated by the following

numerical illustrations. Details of the techniques can be found in [12-14].

VII - SPECIAL CASES INVOLVING DIVERGENCE INSTABILITY

In the most general case, closed-form solutions for the divergence speed are not feasible.
However, in a number of special cases closed-form solutions can be obtained. These cases
are concerned with i) pure bending divergence of swept wings infinitely rigid in transverse

shear and ii) pure torsion divergence.

In the first case, eliminating as¢¢” from Egs. (195) and (19c), assuming very large

torsional stiffness, letting 8, — —uvy, ignoring the inertia terms and implementing a Rayleigh-
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quotient procedure, the expression of the divergence speed can be shown to have the form

L
o 2a33/0 (vg)zdz
(gn)p = — T (24)
tan A d
agctan /0 (vg) dz

where vg must satisfy the boundary conditions

v=0,vp=0atz=0 (25a) -

vg =0, vy =0atz=1L (25b)

Equation (24) reveals that only swept-forward wings, A — —A, can exhibit diveigence
instability in pure bending. This result represents an extension to wings modeled as thin-
walled beams of results obtained in [16]. Also from Eq. (24), one can conclude that the

bending stiffness term a33; must be maximized to increase (gn)p as much as possible. This

-can be achieved by designing the wing so that K14 — 0.

In the pure torsion case, assuming infinite bending stiffness and implementing a
Rayleigh-quotient procedure in conjunction with the static counterpart of Eq. (19a), it can

be shown that

/OL [ass(8")? + am(6)?) ¢z (26)

(Qn)D =4p =

in which the underdashed term is connected with the warping inhibition, and note that ¢

must satisfy the boundary conditions

=0 ¢ =0atz=0 (27a)
45" = a77¢' - (166¢5"I =0atz=1 (27b)

As in the case of wings modeled as solid beams [16], Eq. (26) reveals that pure torsion

divergence can occur for straight wings only.

VIII - APPROXIMATE EXPRESSION FOR THE DIVERGENCE OF SWEPT-
FORWARD WINGS

An approximate expression for the coupled divergence of swept-forward wings can be
derived using the conditions corresponding to decoupled divergence in bending and torsion,
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Egs. (24) and (26). The expression is based on a linear algebraic relation between the two
decoupled expressions of the divergence instability obtained previously. The linear relation

yields the expression for the divergence in the form

P
(gn)p = PSR (28)

where

(29a)

L 0__dn (29b)

where n = z/L. As in Egs. (24) and (26), the warping restraint effect is included but
the transverse shear flexibility is ignored. Equation (28) represents the extension to wings

modeled as thin-walled beams of the divergence expression obtained in [16] for solid beams.

IX - NUMERICAL ILLUSTRATIONS

Wing structures modeled as cantilevered thin-walled beams of biconvex cross sections

made of the graphite-epoxy material are considered. The material properties used are

Er =30 x 10% psi, Er = 0.75 x 10° psi
Grr =0.37 x 10° psi, Grr = 0.45 x 10 psi

prT =prr = 0.25, p=14.3 x 1075 Ib sec? /in*

where L and T denote directions parallel and transverse to the fibers, respectively.

The geometrical characteristics of the wing are displayed in Fig. la. Figure 3a shows
the first three in vacuo eigenfrequencies associated with Problem A as functions of the ply
angle § with the bending-twist coupling stiffness first included, a37 # 0, and then discarded,
az7 = 0. In both cases, plots of the frequencies versus 6 are symmetric about 8§ = 90°
and experience as many peaks as the eigenfrequency number. When a37 = 0, the second
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eigenfrequency has a local maximum in the vicinity of § = 75° and 8 = 105°, and at these ply
angles it comes in close proximity to the third eigenfrequency. On the other hand, when the
effect of bending-twist coupling is included, implying a37 # 0, Fig. 3a reveals that frequency
near merging is precluded. This phenomenon was also observed in Ref. 15, in which a solid
beam model was used. The frequency of the fundamental mode has a maximum at § = 90°.
At 6 = 0° (and 180°), where the bending and twist become decoupled, the fundamental
mode can be identified as a pure bending mode, denoted by B. The frequency associated
with the second mode first increases for 0° < < 80° and then decreases for 80° < § < 90°,
the trend being symmetric about # = 90°. Another notable trend is that, in the absence of
cross-coupling rigidity, the second eigenfrequency is overestimated compared to the real case,
in which the cross-coupling rigidity is included. At 8 = 0° (or § = 180°) and § = 90°, where
decoupling occurs, the second mode can be identified as the second pure bending mode and
the first pure torsional mode, respectively, where the latter is denoted by T. As far as the
third eigenfrequency is concerned, a more complex variation with the ply angle is observed.
Indeed, the variation about § = 90° is drastically attenuated when the cross coupling is
ignored. At 6 = 0° (or § = 180°) and 8 = 90°, this mode can be identified as the first pure

torsional mode and second pure bending mode, respectively.

Figure 3b displays the first three eigenfrequencies for Problem A as functions of the
ply angle for the cases in which the transverse shear effects are incorporated and ignored.
Clearly, for ply angles such that the bending is dominant, omission of the transverse shear

causes an overestimation of frequencies.

Figure 4a portrays plots of the first three eigenfrequencies for Problem B versus the
ply angle 6. In this case, the lateral bending-extension cross-coupling parameter aj4 plays a
similar role to the bending-twist stiffness a37. However, these three eigenfrequencies are well
separated within the entire range of ply angles 8 and, in addition, removal of ay4 does not
cause the second and third eigenfrequencies to approach each other, regardless of the value of
. The plots are symmetric about § = 90° and, as expected, the lateral eigenfrequencies are
much higher than the transverse counterpart frequencies. At § = 90° the first three modes
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are identified as the first three pure lateral bending modes, denoted by B, and at § = 0° and |
0 = 180° as the first two pure lateral bending modes and the first pure axial mode, where

the latter is denoted by A.

Figure 4b portrays the first three eigenfrequencies in lateral vibration versus the ply
angle 8 for the cases in which the transverse shear is included and ignored. A comparison of
Figs. 3b and 4b reveals that the overestimation of eigenfrequencies for the case in which the
transverse shear effects are ignored is more pronounced in chordwise vibration than in the

flapping vibration counterpart.

Figure 5 presents the bending and twist in the three lowest modes as functions of the
normalized position n = z/L for § = 45°. The modes are normalized so that the value at the
tip is equal to unity. For other ply angles and for the case of lateral bending, similar plots
were obtained, but they are not displayed here. As a general comment, the position of the -
nodal points changes in general with 8. This trend, coupled with large variations of these

modes with 8, is likely to have a significant effect on the flutter behavior.

The effect of the ply angle on the divergence speed is illustrated in Fig. 6 for the swept-

back, swept-forward and straight wing aircraft. The figure shows plots of the normalized di-

= 35.566psi.

vergence speed (qn) p / (gn)p versus the ply angle 8, where (¢,)p = (¢a)p IA——G—O

It reveals that the range of ply angles for which divergence instability is avoided decreases
with increasing forward sweep and increases with increasing sweep back angles. Figure 7
displays the normalized divergence speed versus the ply angle for various values of the wall
thickness and for A = 0 and A = —60°. It reveals that, when an increase in the wall thickness
is an option for increasing the divergence speed, then it must be considered in conjunction

with the proper ply angle, thus yielding a maximum increase of the divergence speed.

In Fig. 8a plots of the divergence speed versus the ply angle for two swept angles,
A =0° and A = —60°, and for the cases a7 = 0 and a37 # 0 are displayed. As the figure
reveals, for ag7 = 0 the divergence speed exhibits symmetry about 8 = 90°, whereas for
a37 # 0 it is not symmetric. Moreover, results for straight wings reveal that a larger range
of ply angles corresponding to infinite divergence speed is exhibited than for the forward-
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swept wing counterpart. Although the bending-twist cross coupling is not the only factor
influencing the aeroelastic static behavior, it is clear that its effect is dominant. By increasing
its negative value as much as possible, the bending of the swept wings and the resulting twist

tend to produce a wash-out effect.

Figure 8b displays a plot of the ratio (¢a) p pyw / (4n)p wr 2s a function of the ply angle
f for A = —30° and A = 0, where (¢ )p pw is the divergence speed for a free warping model
and (gn)p g is the divergence speed for the case in which the warping restraint effect is
included. It essentially demonstrates the effect of warping restraint on the divergence speed.
It can be concluded from this figure that the warping inhibition does not always result in an
increase in the divergence speed. In other words, the free warping model does not yield the
most conservative results from the divergence instability point of view. Hence, for a rational
design, the warping restraint effect must always be taken into consideration. A similar result

was obtained for a solid beam wing model in [16-18].

In view the importance of this cross-coupling rigidities, in Fig. 9 plots of a3z, a33, a7,
ase and aj4 versus § are portrayed. Based on these plots, a value of 8 resulting in a more
rational design can be achieved. Within the theory of solid beams, the importance of the -

bending-twist coupling was underscored in {1,11-13, 15-17]

Figures 10a and 10b display plots of the normalized effective angle of attack, é.ss/¢o,
versus the normalized position n = z/L for a swept and a straight wing, and with the ply
angle § and sweep angle A acting as parameters, where ¢, 55 = ¢o+@—vj tan A is the effective
angle of attack and @¢ = 5° is the rigid angle of attack. The plots provide a measure of the
subcritical static aeroelastic response. The effective angle of attack constitutes a measure
of the induced aeroelastic loads. For ply angles § < 90°, the aeroelastic loads are amplified,
whereas for 8 > 90°, for both forward swept and swept back wings, they are attenuated.
In all cases, the flight speed corresponds to a dynamic pressure (gn)gigny = 3.446 psi. The
basic conclusion is that tailoring can play a significant role not only in counteracting the
detrimental wash-in effect, but also in diminishing the effect of elastic twist. This change of

the traditional subcritical static aeroelastic response of forward swept wing is basically due
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to the bending-twist coupling stiffness a37.

The results obtained here confirm that the coupling stiffness a37 plays a key role in con-
trolling the wing behavior as far as the subcritical static aeroelastic response and divergence
instability are concerned. By increasing the negative value of a37 as much as possible for
A < 0, the wash-in effect turns into a wash-out effect. The effect of transverse shear flexibil-
ity on the subcritical aeroelastic response of swept-forward wings is in general detrimental,
in the sense that it exacerbates the wash-in effect. This conclusion, based on results obtained
in this study but not displayed here, is reinforced by results obtained in [13]. However, in
contrast to other cases of ply angles, results for 55° < § < 90° and for A > 0 reveal that
the coupling rigidities play a significant role also in this respect and can render the effect of
transverse shear flexibility either immaterial or slightly beneficial.

Finally, Fig. 11 displays the subcritical aeroelastic responses of 3, = vg/L, 8, and

- ¢ as functions of n for a straight wing with ply angles § = 45° and 6 = 135°. As before,
(gn)fight = 3.448 psi was prescribed. These plots reveal again that, for values of the ply angle
6 for which the cross-coupling parameter a3y reaches a negative value, smaller displacements

are experienced as compared to the case in which a3z is positive.

X - CONCLUSIONS

A dynamic theory of aircraft wings modeled as thin-walled composite beams of closed
cross-sectional contour was presented. The theory incorporates a number of features essential
for a reliable prediction of the free vibration and aeroelastic response characteristics.

A specific ply-angle distribution, inducing a bending-twist cross-coupling, was con- -
sidered and its influence on the eigenvibration, divergence instability and static aeroelastic
response was investigated. As the numerical illustrations reveal, the bending-twist cross-
coupling term a37, considered in conjunction with the tailoring technique, plays a key role in
the enhancement of swept wings performance. Physically, this coupling stiffness generates
a wash-out effect, alleviating the excessive build-up of aerodynamic loads. This is achieved
by using ply angles so as to minimize or completely nullify the wash-in effect, as well as the
detrimental transverse shear flexibility effect. A similar conclusion can be drawn in connec-
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tion with the warping restraint effect, which is always present and should be used to enhance
the aeroelastic characteristics of wing structures.

The various results obtained here are expected to contribute to the understanding of
the role played by a number of nonclassical factors, which, as shown, can affect in a complex

way the behavior of aircraft wings made of composite materials.
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Appendix

Fhe reduced rigidity quantities are as follows:

A? R A A , Ac
K11 = Az — —A’ﬁ’ Kz = Aze — jum =Ko, Kiz= 21&127
, A B A? . A
1‘14:—_322__}:;9:1{41, Ka =A66—A_ifa K23 =2K227
A6B . . A
Kog = By — =12 = K4y, Kyz = 21&24—5 (A.1)
B? BisAx By Asg
Kyg = Doy — =22 K51 = Byg — , Kso = Bgg —
44 n= g Ko 26 yo 52 66 o
A, Bi2Big

Ks3 = 21{5273—, Ksq = Dgg — yop

where A;;, Bi; and D;; denote local stretching, stretching-bending coupling and bending
rigidity quantities, respectively.

The inertia terms are

I = §(iio — yd)mods, I = $(io +28)mads
I3 = f(ibo + 28y + yb; — F.¢)mods, Is = }{[(932 +y%)é — yiio + zio]mods
I =]£[xib0 + xzéy + xyéz — sz(s)aﬁ']mods
+ § (€28, + tmb, — ta(s)d') mads (A.2)
I = f lyibo + y%0; + zyBy — yFo(s)d'Imods
+j({ [mzéz +mll, — ma(s)c}ﬁ'] mads
Iy = §=Fu()ibo = 2Fully = yFu(9)0z + Fuls)' mods
+ § [~ma(s)b. — ta(s)ly + a*(5)3] mads

where
hx)

(mo, m2) = Z/h

p(k) 1 n2)dn (A.3)
(k-1)
denote the mass terms.

The rigidity terms are symmetric, a;; = aj;, and the terms of interests in this paper

have the expressions

as3 =}£ (K11y2 + 2yKi4m + K44m2) ds
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asr ='7{(yK13 + Ky3m)ds, ass = ]{ (K22€2 + A44m2) ds

(A.4)
ase = — f (le{glf + 1(24(1[) ds
ags = f (K1uF2 +2K14Fua + Kaga®) ds, arr = fQ%Kzads
The reduced mass terms are as follows:
(b1, b4, bs, b1o) =fmo(1, y?, 2%, F2)ds
(A.5)

(614, blg) = fmz (mz, az) ds
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Abstract

This paper presents an integrated approach combining structural tailoring with the con-
verse piezoelectric effect for the purpose of actively controlling the vibration and static
aeroelastic characteristics of advanced aircraft wings. The structural model incorporating
a number of nonclassical features consists of a thin/thick-walled closed cross section can-
tilevered beam whose constituent layers exhibit elastic anisotropic properties. In addition,
a system of piezoelectric actuators bonded to, or embedded into the structure generates a
localized strain field in response to an injected electric current, thus producing a change in
the static and dynamic characteristics of the structure. Results reveal that a combination
of both techniques can play a major role in enhancing the vibrational and static aeroelastic

response characteristics of aircraft wings.

1. Introduction

Due to their outstanding properties, such as high strength/stiffness to weight ratio,
fiber-reinforced laminated thick/thin-walled structures are likely to play an increasing role
in the design of advanced aircraft wings. In addition, a number of elastic couplings resulting
from anisotropy and ply-angle sequence of the composite materials can be exploited so as to
enhance the response characteristics. In this regard, within the last two decades, a technique

referred to as structural tailoring has been used with spectacular results.! It should be noted,
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however, that structural tailoring is a passive design technique, in the sense that the control
law is fixed in terms of the considered constitutive equations. This implies that the structure
cannot respond aLdaptiVely to changes in its parameters or external stimuli. To overcome this
shortcoming, additional capabilities must be built into the structure. This is particularly
true in view of the fact that future generations of flight vehicles are likely to operate under

increasingly severe conditions.

An approach showing good promise is adaptive control, which amounts to the integra-
tion of adaptive materials possessing sensing and actuating capabilities into the structure.?™
Piezoelectric materials are excellent candidates for the role of sensors and actuators. In con-
trast to passive structures, in which the vibrational and aeroelastic response characteristics,
are predetermined, in adaptive structures these characteristics can be altered in a known and
predictable manner. These adaptive capabilities can be used to prevent structural resonance
and/or any other type of instability, as well as to improve the static and dynamic response

of the structure.

In this paper, the task of improving the static aeroelastic response and free vibration char-
acteristics of aircraft wings made of advanced composite materials is accomplished through
the synergistic effect of combining structural tailoring and adaptive control techniques. The
structural wing model consists of a thin/thick-walled closed cross-sectional cantilevered beam
whose constituent layers feature elastic anisotropic properties. The adaptive control capa-
bility is achieved by a voltage feedback via the converse piezoelectric effect. The induced

localized strain field produces a change in the dynamic characteristics of the structure.

The global constitutive equations of wing structures made of advanced composite ma-
terials and incorporating adaptive capabilities are first derived. These adaptive capabilities
are provided by piezoelectric layers bonded or embedded into the structure and serving both
as sensors and actuators. Then, based on related work,® the equations of motion and the
associated boundary conditions of composite adaptive structures are derived. Feedback con-
trol laws relating the applied electric field to the mechanical characteristics of the vibrating
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structure are implemented, thus altering the frequencies and mode shapes of the system.
The obtained results underline the fact that simultaneous implementation of tailoring and
adaptive materials technology can enhance the static aeroelastic response and dynamic char-

acteristics of flight vehicle structures significantly.

2. The Structural Model

A structural model consisting of a thin-walled beam of arbitrary cross-section aiming at
simulating the lifting surface of advanced flight vehicles is used. Two systems of coordinates,
namely s, z,n and z,y, z, are used to describe the kinematics of thin-walled beams, as shown
in Fig. 1. The theory of thin-walled beams u.sed herein incorporates the following nonclassical
features: i) Anisotropy of constituent material layers, ii) Transverse shear flexibility and iii)
Primary and secondary warping effects. In the light of ii), the structural model applies not
only to thin-walled beams, but also to thick-walled beams. The theory is based also on the
in-plane cross-section nondeformability assumption.58

Consistent with the above statements, the components of the displacement vector are

expressed as

U(iL‘,y,Z,t) =Ug (Z,t)—yqﬁ(l,t) (1a‘)
o (@unrt) = v (28) +26(2,1) (16)
w(z,y,2,t) = wo (2,1) + 0z (,8) [y (5) + nm]

+ 0y (2,t) [2(s) + n] = ¢ (2,1) [Fu(s) + na(s)] (1¢)
where £ = cos (n,z) and m = cos (n,y) denote the direction cosines. In addition

0, (2,t) = vy (2,8) — vg (2, 1) (2a)
8y (2,t) = 7z2 (2,t) — u6 (2,t) (2b)
where 6, (z,t) and 6, (z,t) denote the rotations about axes z and y, respectively, while v,

and 7, denote the transverse shear strains in the planes yz and zz, respectively. Based on
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Egs. (1), the axial strain component reduces to

S.2(n,s,2,t) = S,.(s, 2,1) +n.§'zz(s,z,t) (3)
where
Sea(s, 2, t) = wh(z,t) + 0, (2, 8)z(s) + 05(2, t)y(s) — 8" (2,1) Fu(s) (4a)
and
.§'zz(s,z,t) = 0;(z,t)€ + 0L(z,t)m — ¢"(2,t)a(s) . (4b)

are the axial strains associated with the primary and secondary warping, respectively, in
which primes denote derivatives with respect to z. The membrane and transverse shear

strain components can be expressed in the form

Sez(s,2,t) = Sez(s,2,t) + 2%9¢'(z,t) ' (5)
and
Sna(s,2,t) = [By(z,1) + up(z,)] £+ [62(2,8) + vp(z,t)| m (6a)
respectively, where
Bua(s,2,t) = = [By(2,1) + (2, 1) m + [0a(z,0) + ¥l (=, t)] £ (6b)

In the above equations, ue(2,t), vo(2,t) and wo(z,t) represent rigid-body translations in the
z,y and z directions and 4(z,t) represents the twist about the z-axis, (see Fig. 2). Moreover,
h = h(s) denotes the wall thickness, allowed to vary in the circumferential direction, Ac the
cross-sectional area bounded by the contour midline, 3 the total length of the contour midline

and ¢ the time. In addition, F,,(s) denotes the warping function defined as®8
s
Fus) = [ frals) — ¥]ds 9

where
§(r(s)/h(s)}ds _ 2Ac (8)
§[1/h(s)] ds B :

4

Y=




is the torsional function, in which §(-)ds denotes the integral along the closed midline contour,

and r,(8) and a are geometric quantities defined as
ra(s) = z(s)l + y(s)m, a = —zm + y{ 9)

When the structure exhibits infinite rigidities in transverse shear, 8,(z,t) — —u)(z,t) and

0:(z,t) = —vi(z,1)..
3. Constitutive Equations for Adaptive Wings

As recently conjectured,? 4910 the adaptive capabilities of piezoelectric devices can result
in superior control compared to standard passive or even active control. Piezoelectric mate-
rials, integrated into the load-bearing structure by means of surface bonding or embedding,
serve as networks of actuator/sensor systems.

The linear three-dimensional piezoelectric constitutive equations can be expressed in

contracted index notation!!
oi = ijSj —eki &k, Dip=e;S;+ efe ) (10a, b)

where o; and Sj(i; 7 =1,2,...,6) denote the stress and strain components, respectively, in

which

_ [ Sppforp=r7=1,2,3
55 = {25,,, forp#r,7=4,56 (11)

Moreover, ij, er; and efe are the elastic (measured under constant electric field), piezoelec-
tric and dielectric constants (measured under constant strain), while & and Dg(k = 1,2,3)
denote the electric field intensity and electric displacement vector, respectively. Summation
over repeated indices is implied in Egs. (10). Equations (10a) and (10b) describe the converse
and direct piezoelectric effects, respectively.

In piezoelectric adaptive structures, the direct effect is used for sensing and the converse
effect is used to. generate cohtrol forces. Equations (10) are valid for the most general
anisotropic case, i.e., for triclinic crystals. In the following, the piezoelectric anisotropy is
restricted to the case of hexagonal symmetry, the n-axis being an axis of rotary symmetry
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coinciding with the direction of polarization!! (thickness polarization). In this case, the
piezoelectric continuum is characterized by a reduced number of elastic piezoelectric and
dielectric coefficients. We also assume that the electric field vector & is defined by the
component & only, £&; = & = 0, and that the electric field intensity &£ is uniform over
the entire area. Due to the fact that the voltage is distributed uniformly, we assume that
in the static case £3 is constant while in the dynamic case it depends on time alone. The
piezoelectric actuators are distributed over the entire span and their distribution in the

circumferential and transversal directions is defined by

Rk(n) =H (n - n(k_)) -H (n - n(k+)) (12(1)

Rk(s) =H (s — S(k_)) -H (S - S(/H_)) (12b)

in which H denotes the Heaviside unit step function. It is assumed that the host structure
and the actuator consist of # layers exhibiting general-type orthotropy, and, respectively of
p piezoelectric layers exhibiting hexagonal symmetry.

Before we derive the global one-dimensional constitutive equations for adaptive wing
structures, it will prove convenient to derive their two-dimensional counterparts. Integrating
the actual three-dimensional constitutive equations over the wall thickness and assuming
that the hoop stress-resultant N,, is negligibly small when compared with the remaining

stresses, the two-dimensional constitutive equations are

SZZ
[sz]_[Ku K2 Kis 1"14} S5z __[N;z} (13)
Nozl— LKn Kn Kuiz Kol | g 0
Nzn = A44Szn (14)
| [8e: |
[Lo] = [ Ka Kio K] | e[ (15)
L, Ks1 Ksz Ks3 Ksal | g 0
-3'22-




where N,, and N,; denote tangential stress resultants, N, denotes the transverse shear
stress resultant and L,, and L,, denote the stress couples, all quantities depending on s, z
and t. Moreover, K;; denote the modified local stiffness coeflicients, listed in the Appendix,
and N?, and L%, denote the piezoelectrically induced-stress resultant and stress couple,

respectively, expressed as

A
NZ,(s,t)= (1 Aiz) Zf(k)(t) (n+y = ne- )) e:(n)R(k)( ) (16a)

. B
L%, (s,t) ES( ) (t)R(x)(s) (n(k+) — n(g- ) e31 [2 n(k+) + n(k- )) ij] (16b)

where, in the case of symmetrically located piezoactuators, the term underscored vanishes.

4. The Equations of Motion for Adaptive Wing Structures

From Ref. 5, the one-dimensional stress-resultants and stress couples are given by

Ty(2,1) = }4 Nixds, Qu(z,t) = }4 (=Ngsm + Nyuf) ds (17a,b)
Qylz,t) = ]{ (Nysl + Nyum) ds, My(z,1) = f (yN,s + Lom)ds  (17c,d)
My(2,1) = § (aNex + Lust) ds, Mi(z1) = § NS,QAC (17, f)
and
Bu(z,1) = }{ [Fo(s)Nyz + a(s) L) ds (17¢)

where T, is the axial force, @, and @ are shear forces, M;, M, and M, are the bending and
twist moments, respectively, while B, is a bimoment global quantity. In view of Egs. (13)

and (15), the stress quantities T;, M, M, and B, can be cast in the more convenient form
T,=T,~T, My=M,—-M,, M,=M,—M,, B,=B,-B, (18a-d)

where single and double overcarets identify purely mechanical and piezoelectrically induced

terms, respectively. The latter terms are

Bia

Tz —f Z )R(k) (n(k+) — n(k—)) egﬁ) B ( n(k+) + Nk )) - E}-] ds (19a)
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{4
: (k) (k) A Bz
e= 328 () = nm) By o (1 - 5) - m 2] s

+24
2

. ,
2 (k) (k) et 1 _—=:
M, —}{kX::l & (n(k+) - n(k—)) e3r By (s) [x (I_An) +€Au]ds

L
mY € (nsy—niny) eg';m(k)(s)} ds (195)
k=1

1 V4
+-2-f [Z Z gék) (n%k*')_n%k‘)) e:(ﬁ)R(k)(s)] ds (196)
k=1

£
Ba = § 3081 () = o)) i Rep(o) [ R (1372 ) = )2 s

1 ¢ ‘
+3 f [a(s) > &) (ndey—ndo) eg';m(k)(s)] ds (19d)
k=1

It is readily seen from Eqs. (19a-d) that the piezoelectrically induced stress resultants are
proportional to the injected electric current £3. In the case of actuators placed symmetrically
throughout the thickness of the beam, the underlined terms in Egs. (19) vanish.

One reason for employing advanced composite materials in flight vehicle design lies in
the fact that they permit the use of specific lay-up and fiber orientations so as to induce
preferred elastic couplings having enhanced effects on the response characteristics. As studies
on vibration and subcritical/critical aeroelastic behavior of wing structures reveal,1"18:19 the
bending-twist coupling plays a major role. Additional beneficial effects of this cross coupling
-have been discussed recently in Ref. 20. In the case of wing structures modeled as thin-walled
beams, the ply-configuration inducing such an elastic coupling is referred to in Refs. 12 as
the circumferentially antisymmetric stiffness configuration and in Ref. 13 as the symmetric

configuration. The associated ply-angle distribution is governed by the law (see Fig. 3)

0(y) = —0(-y) (20)
The resulting equations for adaptive wing structures characterized by the above men-

tioned ply-angle configuration are:

- aged" t+ ar30; — ags(vl! + 60") + ar7¢" + m. = (bs + bs) é — (bio + b1g) ¢" (21a)




ass (V) +0;) + ased" + Py = bifo (215)

a33b; + a37¢” —ags (vl +0.) — ass (vL + 0z) — as¢” = (bg + b14) 0z (21¢)

as well as by the boundary conditions at the root (z = 0)

¢=0, ¢,=0 ] UO'—"O, 0z= (22a-d)

and at the tip (z = L)

— ageg" +arsby +arrd' = — (bo + bis) ¢'» aesg” + aes (v +6z) =0 (23a,0)

ass (vh+0z) + ased =0, assb), +azrg’ = M, (23¢, d)

The coefficients appearing in Eqgs. (21) and (23) stand for the stiffness and mass quantities
and are given in the Appendix. The existence of two bending-twist stiffness coupling terms,
namely, azg7 = a73 and asg = ags, should be noted. The latter is induced by the warping

restraint effect and its influence is in general somewhat less important than that of the

former. Their variation with the ply-angle is presented in Fig. 16 of Ref. 5. The singly and

doubly dashed underlined terms in Eqs. (21)-(23) are associated with the warping restraint
and warping inertia, respectively. Because the piezoactuators are distributed over the entire
wing span, derivatives with respect to z of piezoelectrically-induced terms in Egs. (21) vanish.
This explains why their contribution does not appear in the equations of motion; it appears
only as a nonhomogeneous term in the boundary conditions.

It should be observed here that for the free vibration problem the transverse load p, and
the twisting moment m, must be ignored in Eqgs. (21) and for the static aeroelastic problem
the inertia terms must be omitted from Eqs. (21) and (23). Consistent with strip-theory
aerodynamics, the unsteady lift force p, and torsional aerodynamic moment m,, both p‘er

unit span, can be expressed as

Py(2) =ancao (#o + ¢ — vjtan A) — NW/2L
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(24a,b)
mz(2) =gncaoe (¢o +é— v'o tan A) -+ q,,czCMAC - NWd/2L

Here ¢, = %pUg denotes the dynamic pressure normal to the leading edge of the swept wing,
c the chord of the wing, a, the “corrected lift” curve slope coeflicient, A the angle of sweep
(considered positive for swept-back), e the offset between the aerodynamic and reference
axis, ¢, the rigid angle of attack (measured in planes normal to the leading edge), Cprac the
wing section pitching moment coefficient (whose influence, as usual, is disregarded), W/2L
the weight per unit length of wing and NV the load factor normal to the wing surface, whose

expression 1s
2cqna,

W

The static aeroelastic response is analyzed both in the subcritical range, i.e., for velocities

N =

/OL (dJo + ¢ — v} tan A) dz - (25)

gn < (gn)p, and in the critical case as well, where (¢n)p denotes the divergence dynamic
pressure. As a general remark, Egs. (24) reveal that for A < 0, i.e., for swept-forward
wings, the aeroelastic bending-twist coupling results in an increase in py(z) and m,(z),
which in turn results in a deterioration of the subcritical static aeroelastic response and
in a dramatic decrease of the divergence speed. Whereas the goal of the subcritical static
aeroelastic analysis consists of the determination of the distribution of the effective angle
of attack ¢.5s and of the lift force, as affected by the elastic deformations, the study of
the critical case involves the determination of divergence instability conditions. Clearly, the
main target of tailoring applied to swept-forward wings is to yield a decrease in the effective
angle of attack, and implicitly in the aeroelastic lift and, as a result, an increase in the
critical divergence speed. Whereas the study of the subcritical static aeroelastic response
requires the solution of the integral-differential system of equations obtained by inserting
Egs. (24) and (25) into Eqgs. (21), the determination of the divergence speed leads to the
solution of an eigenvalue problem, where the divergence speed plays the role of eigenvalue.
Structural tailoring applied to the vibration of wing structures must result in an increase
in the eigenfrequencies without weight penalties. The determination of natural frequencies
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requires the solution of an eigenvalue problem.?!

In spite of the mathematical complexities involved in the solution of the above men-
tioned problems, in which the eigenvalue appears both in the differential equations and the
boundary conditions, the computational methodologies used proved to be extremely power-
ful. The spatial Laplace transform method yields exact solutions,!®22 but is computationally
laborious. On the other hand, the extended Galerkin method yields approximate solutions

in excellent agreement with the exact ones and with less computational effort.?3

5. The Control Law and the Closed-Loop Eigenvalues

For feedback control, the applied electric field &3, upon which the piezoelectrically in-
duced moment depends, is a function of the wing motion. Two simple control laws are being
considered. The first control law, denoted by CL1, requires that the injected electric field

&3 is proportional to the bending moment MI(O) at the wing root, which implies that
Es = G0,,(0) (26)

Upon considering the boundary condition (23d), as well as Eq. (19b), the control law given

by Eq. (26) can be rewritten as
02(L) + f3¢/(L) — kp(0) = 0 (27)

where f3 = a3r/a33 and k, denotes the feedback gain. This control law expresses the fact that
the bending moment at the wing tip induced by piezoelectric strain actuation is proportional
to the mechanical bending moment at the wing root. This control law was used in Refs. 14-
16. The second control law, denoted by C L2, requires that the applied electric field &3 is

proportional to the vertical deflection of the beam tip vo(L). This results in the condition
05(L) + f34'(L) = kpvo(L) (28)

Equdtibn (28) expresses the fact that the boundary moment control at the wing tip, induced
by piezoelectric strain actuation, is proportional to the transversal deflection at the wing
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tip. Control law (28) is similar to the one proposed in Ref. 24. It should be noticed that the
feedback gains k, and Fp are nondimensional and dimensional quantities, respectively. The

nondimensional counterpart of k, is kp = kpL?.

6. Numerical Examples

The equations derived here are general, in the sense that they are valid for a beam of
arbitrary cross section, as well as for piezoelectric actuators arbitrarily located throughout
the wall thickness and along the circumference of the beam. However, in the present case
a biconvex profile, typical of supersonic wing airplanes, is adopted. It is assumed that
the piezoceramic actuators used here are mounted symmetrically on the upper and bottom
surfaces of the wing. The host structure is assumed to be of a graphite/epoxy material whose
elastic characteristics are

Er = 30x10° psi, Ex = 0.75x 10° psi
Grr = 0.37x10° psi, Gpr = 0.45x 10° psi
prr = pr7 = 0.25, p = 14.3%107° Ibsec? /in*
where the subscripts L and T denote directions parallel and transversal to the fibers, re-
spectively. The geometrical wing characteristics are displayed in Fig. 1 and the piezoelectric
actuators are made of PZT-4 ceramic, whose properties are given in Ref. 17.

The associated differential eigenvalue problem has been discretized in space by the ex-

tended Galerkin method.?® The obtained results were checked by means of an exact solution

19.21 and the agreement was excellent.

based on a spatial Laplace transform

Tailoring and adaptive control are applied simultaneously to enhance the vibrational
characteristics of wing structures. Results are displayed in Figs. 4 and 5 and Figs. 7 and
8 for CL1 and CL2, respectively. It should be mentioned that for § # 0 and 6 # 90°
the bending-twist coupling causes the adaptive control to be somewhat weaker in places
where the twist is very strong. On the other hand, for § = 0° and 90°, where the bending
decouples, the adaptive control becomes very effective. As a general rule, the frequencies

were normalized with respect to the ones corresponding to the uncontrolled case k, = 0, and
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to on-axes ply angle configuration, § = 0. The trend in the eigenfrequencies revealed in this
paper using C' L2 agrees fully with one obtained theoretically and verified experimentally.?
As can be concluded from Figs. 5 and 8, the first eigenfrequency changes gradually with
the ply angle from one corresponding to a pure bending mode (labelled as B) at § = 0 to
a coupled bending-twist mode for 0 < # < 90° to a pure bending mode for § = 90°. On
the other hand, the second eigenfrequency changes from a pure bending mode at 6 = 0 to
a pure twist mode (labelled as T') for 8 = 90°, and the third eigenfrequency changes from
pure twist for § = 0 to pure bending for 8 = 90°. |
Plots of the first closed-loop mode are shown in Fig. 6 for three values of feedback gains.
It is easy to see that the original uncontrolled modes differ considerably from the controlled
modes. In Figs. 9a and 9b, the reduced divergence speed parameter (gncao)p is displayed as a
function of @ for various values of the feedback gain using C L1 and for the cases of a straight
wing, A = 0, and a swept-forward wing, A = —30°. As readily seen, the use of both tailoring
and adaptive control with negative feedback gains result in a significant increase in the
divergence speed. In Figs. 10a, 10b and 11, the normalized effective angle of attack ¢.¢s/do
is displayed for nonadaptive wings, k, = 0, and for adaptive wings, k, < 0, respectively .
The results reveal that a strong attenuation of aeroelastic loads is experienced for k, < 0, as
compared to the case corresponding to k, = 0. As Fig. 11 reveals, as the magnitude of the
-feedback gain increases, the attenuation becomes more and more pronounced. It should be
noted that in the case of C L2, improved vibrational characteristics are obtained for positive
feedback control gains, k, > 0.
The results demonstrate that the use of both tailoring and adaptive control techniques
can yield dramatic improvements in the dynamic and static aeroelastic characteristics of

aircraft wings.

7. Summary and Conclusions

A comprehensive structural model of aircraft wing modeled as a thin/thick-walled beam
of arbitrary closed cross section, cantilevered aircraft wing structures incorporating adaptive
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capabilities via the inverse piezoelectric effect was developed. The anisotropic wing model
incorporates a number of nonclassical features characterizing actual wing structures.

The unique directional properties of composite materials permits tailoring, which
amounts to enhancing wing structure response, whereas incorporation of piezoactuators per-
‘mits vibration and static aeroelastic control of the structure. It is demonstrated here that
the synergistic combination of tailoring of anisotropic composite materials and control by
means of adaptive materials results in a wing with better dynamic and static aeroelastic
characteristics than would have resulted from tailoring or control alone. Incorporation of
both technologies can provide an expanded performance envelope of flight vehicles, without

weight penalties.
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Appendix

The-modified local stiffness coefficients are

A? A12As6 Ac
Ky = App—22 Kig=Ag— =Ky, K13 =2K13= Al-3
11 2= 7 o K=As-— 21, K13 127 ( )
A B A? A
K14=By— 22 — Ky, Kpp = Ags — 25, Koz = 2K~ (A4-6)
A11 All ﬂ
A6B A B?
Kos = Bog— 2 — Ko, Ky3=2Ko4=2, Kgg = Dyy — =12 (AT7-9)
An B An
BigA BigA A By,B
Ks1 = Byg— 22 Koy = Bgg— o8 Ksy = 2K5p=F, Ksg = Dysg— —=—1> (A10-13)
A An B An

where A;;, Bi, and D;; denote, respectively, the stretching, bending-stretching and bending
stiffness quantities associated with the entire structure, where the structure consists of N =
2 + p host and piezoactuator layers.

The stiffness and mass coefficients have the form

aj = fKuds, ajq4 = a41 = —legmdS, az = f (1{121 + 22:1{14[-}- 1{4452) S (A14 16

)

a3 = }{ (Kuy2 + 2yKi4m + K44m2) ds, a7 = ar3 = j{(yKls + Ky43m)ds (A17,18)

aqy = f (1'(227712 + A4452) ds, ass = }{ (Kzzfz + A44m2) ds (A19,20)

ase = ags = —f(FwKzlf + Ko4al)ds (A21)
2 2 Ac

a6 = }{ K1 F? +2KyFoa + Kya®) ds, a7y = }4 275 Kzsds (A22,23)

(b1, ba, bs, bao) f mo (1, y%, 2%, F2,) ds, (b, bis,bis) = fmz (m?,£2,a%)ds (A24,25)

where

N k
(mo,m2) = ; /hh( ) (1 nz) dn (A26)

=1" (k- 1)
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STRUCTURAL MODELING OF LOW-ASPECT RATIO COMPOSITE WINGS®

L. Meirovitch! and T. J. Seitz?
- Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

SUMMARY

This paper is concerned with the aeroelastic tailoring of a structural model consisting
of a rigid fuselage and a low-aspect ratio wing made of composite materials. The wing is
modeled as a trapezoidal plate with root and tip chords parallel to the flow and with general
sweep. The fuselage is capable of plunge and pitch and th-e elastic wing model includes shear

deformations but ignores rotatory inertia.

1. INTRODUCTION

Recently, and particularly in the past decade, solutions to the flutter problem based on
anisotropic wings made of composite materials have been presented by many authors. Much
of this work refined the concept of “composite tailoring” first put forth by Krone!. During
the same time frame, many researchers have come to the conclusion that the divergence
problem associated with forward swept wings is in fact a body-freedom flutter phenomenon.
Body-freedom flutter is the coupling of a flexible aircraft mode with a rigid-body mode
due to interaction with aerodynamic loads. One common example of this, and the one
receiving attention here, is the coupling of flexible wing bending and rigid-body pitch. Work
by Weisshaar et al.? leads to the conclusion that a clamped wing model generally predicts
larger improvements in the instability speed for composite tailoring than for models that

include rigid body motions. An accurate prediction of the critical speed in the presence

* Supported by the AFOSR. Research Grant 91-0351 monitored by Dr. Spencer T. Wu.
The support is greatly appreciated.

1 University Distinguished Professor. Fellow AIAA.

2 Graduate Research Assistant. Currently Senior Engineer, Cessna Aircraft Company,
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of structural parameter variations must be a part of any structural model aiming to model

general planforms accurately.

The Tequirements of modern wing planforms’ place additional constraints on structural
models. In particular, many wings of practical interest are of too low an aspect ratio to be
approximated by a beam model. Similarly, the sweep angle shoulci not be confined to aft
only, particularly for an optimization problem. Two-dimensional models capable of accepting
fiber directional information is suggested in this case, but examples of such models in the

literature concerned with this application are rared4,

The structural model suggested by the above physical requirements is a two-dimenéiona.l
anisotropic plate consisting of several variable thickness layers of generally orthotropic ma-
terial. Because the interest lies in composite materials, it is also important to include shear
deformability in the model. Fuselage rigid-body degrees of freedom must also be included.
Two compromises on generality contribute to the goal of low computational effort without
significantly affecting the desire to include-all the relevant physical effects. Realistic amounts '
of airfoil camber have little effect on displacements from unsteady pressure loading, suggest-
ing that camber may be omitted for aeroelastic problems. Similarly, the conclusion that
rotatory inertia terms for wings of practical thickness can be ignored is supported by the

text by Librescu®.

The interest lies in a structural model that includes the essential physical characteristics
required for flutter analysis of modern low-aspect ratio composite wings. The model should
be sufficiently accurate to account for all important structural parameters and yet sufficiently
simple so as not to be computationally intensive. From the foregoing considerations, a struc-
tural model satisfying the imposed requirements has emerged. The model is a trapezoidal
plate with root and tip chords parallel to the flow. There are 2k symmetrically stacked,
variable thickness, generally orthotropic laminae in the laminate (Figs. 1 and 2). Mindlin
shear deformability® is included with a shear correction factor of 1.0. The wing is attached
to a rigid fuselage capable of pitch and plunge. This is the simplest model retaining the
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essential physical characteristics of low-aspect ratio composite wings with general sweep. It
is still an involved formulation, including three displacement variables and natural boundary
conditions complicated by the sweep angles. To produce a reasonably accurate solution with
as few terms as possible, the series solution is in terms of quasi-comparison functions, which

guarantees fast convergenoe".

2. DEFINITION OF DISPLACEMENTS AND BOUNDARY CONDITIONS

The mathematical model under consideration consists of a rigid fuselage attached to a
flexible wing. The fuselage is assumed to undergo two rigid-body displacements, namely,
plunge and pitch. On the other hand, the wing is assumed to act as an elastic plate clamped
at the root and free at the the other three boundaries (Fig. 1). The transverse displacement

of a typical point in the fuselage has the form
wy(t) = wo(t) + (2 — zc)do(t) (1a)

where wg(t) is the plunge, defined as the transverse displacement of the system (fuselage
and wing) mass center C and Y is the pitch, defined as the rotation of the system about
an axis parallel to y and passing through C, and z¢ is the distance from the origin of zyz

to point C. Moreover, the displacements of a typical point in the plate are as follows:

u(z,y,z,t) = uo(z,y,t) + 2z (z,y,t) (1b)
v(z, ¥, 2,t) = vo(Z,¥,t) + 29y (2,1, 1) (Le)
wp(z»yvt) = wC(t) + (J: - 27C)¢C(t) + U)(.‘E,y,t) (ld)

where ug and vy are midplane elastic deflections in the z and y directions, respectively, ¥z
and 1, are angular displacements of a line normal to the nominal plane of the plate due to.
elasticity and w is the elastic part of the transverse displacement.

Because the wing is attached to a fuselage assumed to be rigid, w = 0, ¥; = 0 and
1y = 0 along y = 0. These are the only geometric boundary conditions of the problem.
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3. THE EXTENDED HAMILTON’S PRINCIPLE
The dynamical problem can be formulated by means of the extended Hamilton’s prindi-

ple, which can be written in the form®

t —_—
[ (6T 8V + FWac) de =0, bug =G0 = b =B =6y =0 2t =it (2)

1

where T is the kinetic energy, V is the potential energy and 6W . is the virtual work

performed by the nonconservative forces.

The kinetic energy arises from two sources, the motion of fuselage and of the wing, and

has the expression

1 . . 12 1 s (TE .2
T =Tj+ Ty = 5/ [ioc + (z = z0) o] dmy + 5/0 [ mildady

1 ) . ) s [TE
=3 (Mcwzc + Icz/)%) + wc/(; i mwdzdy
. s (TE . 1 rs (TE .9
+¢CA /LE m(:x:—:z:c)wd:zdy+-2—'/[; /;,E mw*dzdy (3)

where M is the mass of the system and I¢ is the pitch mass moment of inertia of the system -

about the mass center C.
The potential energy is assumed to be entirely due to the strain energy. In view of

the lay-up symmetry, it is reasonable to assume that ug and vg are zero so that the strain-

displacement relations assume the simple form
€ =2Yrz, € =2Pyy, € =0 (4a,b,¢c)

Yyz = 1/’3/ +wy, Yzz = Y: + Wz, Yoy = 2 (¢z,y + ¢y,z) (4da ¢, f)

where the shear strains are recognized as engineering shear strains. Moreover, the symbols
,z and ,y in the subscripts denote derivatives with respect to z and y, respectively.
For the jth generally orthotropic layer with principal axes 1 and 2, the constitutive

equations take the form

o1’ a1’
o2 | €
r3 | =[Q) |73 (5)
713 Y13
T12 112
4




The elements of [Q} a.re related to material properties of the jth layer by

) E'j ) VJ Ej
Q‘{ =—-—l.—-.—, "2 = —1272 (6(1, b)
- bl- M2V - viaviy
dh=—P . Q=0 (6¢,4)
22 = 7 v TV ’
- 1- v . ‘
Qis =Gls, Qis = Gi, (e, f)

where E;, Gim and Vi are Young’s moduli, shear moduli and Poisson’s ratios, respectively.

The stress, engineering strain and constitutive relationships for the jth layer can be written

as follows:
;= L7, = I o = @i (a.8.9
where
cos? 6; sin® 0 0 sin 26;
sin® 6, cos? §; 0 0 — sin 26;
[T}] = 0 0 cosf; —sinb; 0 (?a)
0 0 sinf; cosf;j 0
~1sin20; lsin26, 0 0 cos2f -
@) = el (86)
a;' =0z oy Tyz Trz sz]T’ a.'i’ =[01 o2 T3 T13 TIZ]T (8¢,d)

T
Yy Yzy 7 3 Y13 Y12
Gelea B B R4l BT (8e:7)

in which the conversion to engineering strain was taken into account. The angle §; is from
the plate axis z to the material axis (1);.

Next, we propose to derive the laminate strain energy. The laminate consists of 2k
symmetrically-stacked layers of variable thickness. Each layer height, t;, is a continuous
function of z and y (Fig. 2). The strain energy density for a single layer j or its counterpart
below the midplane is

~ 1ot

=L S oidas ©)

2 /41 i

where i = z,y,y2, 2z, zy. Summation over all the layers and integration over the domain of

SO

j==k

the plate leads to the total strain energy
5

d{e{dz} } dzdy (10)
1
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where s is the wing span, LE = LE(y) the wing leading edge and TE = TE(y) the wing
trailing edge. Substituting the strain-displacement relations, Egs. (4), and the constitutive
relations, Eq. (7c), into Eq. (10) and integrating over the layer thicknesses, we obtain the

total strain energy expression

=%/ / j=—k { ’—1) [1/’: zml * ¢y'y@2

+ (Yz,y + ‘/’y,z) Qés + 2¢=,z¢v,yG{2 + 2tz (Y29 + Yy.z) a{e
2y (Yo + ) Qo) + (& = tica) [(%e + 0,0 Ths

(gt Ty +2(Ye +02) By +w0y) Qs Jdody  (1D)

It must be recognized here that t; = t;(z,y). The summation can be eliminated from the

strain energy expression by considering the total laminate extensional and bending stiffness -
coefficients A,y and D, defined as

k . 1 & :

A= 3 (= t-) QD=3 L (8- 8.1) Qo (12)

and we observe that, because the thickness of the various layers is variable, Az = Ag(z,y)

and D,y = Dgp(z,y). Using Egs. (12), the total laminate strain energy can now be expressed

in the compact form

1 r¢ TE T T
v=; [ [ (vhDwp +v5Aba) dudy (13)
where 5 _
z,z
¥p = Yy } y Ya= [i: i Z‘i] (14a,bd)
1/)z,y + "l’y,z !
Dy Diz Dy
D [Du Dz Dis|, A=[4 4%] (14c,d)
Dis D3¢ Des

It remains to derive an expression for W ... Under consideration is a wing in the form
of a trapezoidal planform, and in particular one characterized by low aspect ratio and/or for-
ward swept configuration. The most important speed regime for such a wing is undoubtedly
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supersonic. The main reason for including the aerodynamics is to demonstrate the usefulness
of the structural model. A complete investigation of a wing would require appropriate aero-
dyna.rni;: theories for subsonic, transonic, supersonic and perhaps hypersonic speed regimes.
The usefulness of this model can be demonstrated with supersonic aerodynamics, chosen for
relevancy and for relative ease of application. For large Mach numbers, M2 >> 1, there
is a weak memory effect, in addition to weak three-dimensional effects. This opens up the
prospect of a point-function relation between the pressure difference py — p¢ and the dis-
placement w of the wing, which makes it both convenient and useful. The structural model
is suitable for wings of any aspect ratio. While piston theory is used to demonstrate this
model, it must be understood that, because it is a strip theory, it is not as suitable for very
low aspect ratios as more sophisticated theories. This point function property allows the
writing of an explicit aerodynamic operator operating on the vertical displacement of the

wing, so that the force density can be written in the form®

d 10 :
Anwy = -C(z) <5£ + -[-J-gt') Wp (15)
where
4 +1 . dt
o) =21+ 75= e (16)

in which M is the Mach number, g the dynamic pressure, ty the wing half thickness, U the
free stream airspeed and 7 the ratio of specific heats.

The nonconservative virtual work is due to the aerodynamic forces. The distributed force,
Eq. (15), multiplied by the corresponding virtual displacement yields the nonconservative
virtual work density. Then, using Eqgs. (1d) and (15) and integrating over the domain of the

wing, we obtain the nonconservative virtual work

W= | " [T Anwpbupdady = Wobwe + Ycbio + [ f "5 Wowdzdy (17)
0 JLE 0 JLE
whgre
We = - /’ /TE C(z){tl’c +wz+ = [ + (= — 2c) o + ] }dzdy (18a)
0 JLE U ,
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is a resultant aerodynamic force,

Ve = -/0‘ /I:.EC(z) {t,bc +we+ % e + (= — zc) Yo + w]} (z —zc)dzdy  (180)

is a resultant aerodynamic moment about an axis parallel to y and passing through C and

W = ~C(o) (o + wa + 5 libe + (2 — 26) Yo + 9] (180

is an aerodynamic force density.

4 THE EIGENVALUE PROBLEM

Inserting Eqs. (3), (13) and (16) into the extended Hamilton’s principle and following the
usual steps,® we can obtain the boundary-value problem for the system. The boundary-value
problem consists of two ordinary differential equations for wy(t) and $¢(t) and three par-
tial differential equations for w(z,y,t), ¥=z(z,y,t) and ¥y(z,y,t), together with appropriate
boundary conditions.

The differential eigenvalue problem can be obtained from the boundary-value problem -
by assuming that the displacements vary exponentially with time. The state of the art does
not permit a closed-form solution of the differential eigenvalue problem, so that one must
be content with an approximate solution, which amounts to spatial discretization of the
problem through a series expansion. As a result, the original differential eigenvalue problem
is replaced by an algebraic eigenvalue problem. It turns out that, in deriving the algebraic
eigenvalue problem, it is more efficient to use directly the extended Hamilton’s principle, Eq.

(2). To this end, we assume a solution of the form

we(t) = a(t), ¥o(t) = a(1) (19, b)

n+2
w(z,y,t) = };3 ¢i(z,¥)ai(t) (19¢)
42
Ya(z,0,t) = Eadu(z,y)qe(t) (194)
1=n+
3n+2
by(z 1) = Y iz y)a(t) (19¢)

1=2n+3
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where ¢; are space-dependent trial functions and ¢; are time-dependent generalized coordi-
nates. Inserting Eqs. (19) into Eq. (3) and omitting the integral limits for brevity, we can
write the kinetic energy in the discretized form
1 . ; . . v .
T =3 (Mowzc + Imbé) + we // mwdzdy + Yc // m(z — z¢) wdzdy

1 .9 l.p,,.
ud = - 2
+ 5 /mw dzdy 54 Mq (20)

where q i8 a 3n-vector of amplitudes and M is the symmetric mass matrix having the

components
My =Mg, My =0 (éla, b)
M; = [[ m;dady, 3< 5 <n+2 (21¢)
Mij=0,j>n+2 (21d)
My =0, My = Ic (21e, f)
sz=//m(x—xc)¢jdzdy, 3<j<n+2’ (219) -
Myj=0,j>n+2 (21R)
M;; = / / mid;dedy,3 <i,j <n+2 (215)
Mij=0,i,j>n+2 (215)

Moreover, introducing Eqs. (19c-¢) into Eq. (13) and considering Egs. (14), we obtain the

discretized potential energy
1 1
= & J[ (#Bvp + 5404) dady = 5a"Ka (22)

where K is the symmetric stiffness matrix having the entries

Kij=0,i=1,2and 1 <j <3n+2 (23a)
Kij = [[ Biadindss + (i + bisbia) As

+6iydjyAu]dzdy, 3 <1, jSn+2 (23b)
Ki; =// (G Ass + i,y Ass) dzdy, '
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3<i<n+2,n+3<;<2n+2 (23c)

Kij = [[ (Bisdidus + digbiAne) dudy,

; 3<i<n+2,2n+3<j<In+2 (234)
K= / / [idjAss + @iz sz D11 + diybjyDes
+ (¢i,y¢j,z + ¢i,z¢j,y) DIG] dzdy, n+3<t,5<2n+ 2 (238)

Kij= / / (¢idjAds + ¢i P,z D16 + Si,yb5zDes + #i,2 85y D12
+iybjyDas)dzdy, n+3<i<2n+2, 2n+3 < < 3n+2 (23f)
Ki; = / / [$id; Ass + bi 295, Des + biy®jyDa2 |
+ (Giy®sz + $izdsy) Dasldzdy, 2n+3 < 1,5 < 3n+2 (239)
Finally, inserting Eqs. (19c — e) into Eq. (17) and considering Eqgs. (18), we can write
the discretized virtual work due to aerodynamic forces in the form

W e = Webwe + Yobio + / / Wéwdzdy = —6qF (KAq + flj-Hq) (24) .

where the entries of the nonsymmetric matrix K4 are

Kaij=0,j=12...,n+2 (25a)
Kan = / / Cdzdy (25b)
Kay = // C(z - zc)dzdy (25¢)
K= [[C4jdedy, 3<j <n+2 (25d)
Kair = / / Céidrdy, 3<i<n+2 (25¢)
KAiz=//C'($*zc)¢i,zd-’cdy, 3<i<n+2 (25f).
Kaij = [[ Coindjdedy, 3<irj Snt2 (259)
Kaj=0,1<i<n+2 j>n+2 (25h)
Kaij=0, i>n+2 (250)

and those of the symmetric matrix H are

Hu = / /C’da:dy, Hi = / /c (z - z) dzdy (264, )
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Hy; =// Cé¢jdzdy, 3<j<n+2 (26¢)

) Hy = / / C (z - z¢)° dzdy (26d)
B Hyy = [[C(a - 20)$jdady,3 S j Sm+2 (26e)
Hij = [[ Caisjdedy, 3<ij Sn+2 (26)
H;j=0,15i5n+2,j>n+2 (269)
Hij =0, i>n+2 (26h)

Introducing Eqgs. (20), (22) and (24) into Eq. (2), integrating by parts with respect to
time and invoking the arbitrariness of 6q, we obtain a set of simultaneous ordinary differential

equations, which can be written in the compact form

R
Ma+ zHa+(K+Ka)a=0 (27)

'Then, letting

q(t) = ae™ (28)

we obtain the desired algebraic eigenvalue problem
2 A
,\M+v—H+K+KA a=0 (29)

and we note that the problém is nonself-adjoint due to the presence of the aerodynamic

matrices H and K4.
The solution of the eigenvalue problem (29) requires that it be cast in state form. To this
T
end, we introduce the state vector X = [aT AaT] . Then, adjoining the identity Aa = Aa,

Eq. (29) can be rewritten in the state form

Ax = ABx (30)

where

A=[—(K?{-KA) —é/U]’B=[é 1?4] (31a,5)
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Because the matrix B is singular, some of the eigenvalues are infinite. Numerical solutions

for this type of eigenvalue problems can be obtained by an algorithm described in Ref. 10.

5. APPROXIMATE SOLUTIONS IN TERMS OF QUASI-COMPARISON

FUNCTIONS

In Sec. 4, we derived a discretized model for our system by assuming an approximate
solution in the form of a linear combination of trial functions. The accuracy of the approx-
imate solution and the computational time depend on the nature of the trial functions. To
examine the nature of the trial functions, a brief discussion of the various classes of functions
should prove beneficial.

Exact, closed-form solutions of differential eigenvalue problems represent the class of
eigenfunctions. Clearly, they satisfy both the differential equations and all the boundary
‘conditions of the problem. In most practical problems closed-form solutions do not exist.
They certainly do not exist in the problem at hand. Approximate solutions generally fail
to satisfy the differential equations. Functions satisfying certain differentiability conditions
and all the boundary conditions, but not necessarily the differential equations, are called
comparison functions.® In many problems, including that under ooﬁsidera.tion, comparison
functions are difficult to generate. In the case of self-adjoint systems, it is often advantageous
to formulate the eigenvalue problem by a variational approach, which amounts to rendering
Rayleigh’s quotient stationary. In this case, the trial functions need satisfy reduced differen-
tiability conditions and the geometric boundary conditions alone. Such functions are known
as admissible functions.® It has been demonstrated in Ref. 7 that solutions in terms of a,d--
missible functions can at times converge very slowly. To improve convergence, a new class of
functions was created in Ref. 11, namely the class of quasi-comparison functions. The quasi-
comparison functions are linear combinations of admissible functions capable of satisfying
all the boundary conditions of the problem. Quasi-comparison functions can be generated
by combining several families of admissible functions chosen so as to permit the satisfaction
of the natural boundary conditions. It turns out that solutions in terms of quasi-comparison
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functions tend to satisfy not only the natural boundary conditions but also the differential
equations much more accurately than solutions in terms of mere admissible functions. In
fact, solutions in terms c.>f quasi-comparison functions can at times be more accurate than
solutions in terms of comparison functions, because combinations of functions from several
families with different characteristics permit better approximations of the solution through-
out the interior of the domain than combinations of functions from a single family.”!! In
Refs. 12 and 13, it was demonstrated that solutions in terms of quasi-comparison functions
exhibit the same superior convergence characteristics in the case of nonself-adjoint systems
as well. l

In view of the above discussion, we propose to choose the trial functions in Eqs. (19c—e)
from the class of quasi-comparison functions. These functions must depend on both z and y
and are assumed to have the form of products of chordwise functions X} ’ (z) and spanwise
functions Yy, (y).

The eigenvalue problem is defined in terms of trial functions ¢; and @; (4,5 = 1,2,3,..., )
3n + 2), where n is the number of trial functions for each of the three displacements w, Y
and 1y. There are additionally two rigid-body modes, namely, ¢; = 1 and ¢2 = 1.

Let the same set of trial functions be used for each of the displacements w, ¥z and ¥y.

The undetermined coefficients, of course, are not the same. Then, for ¢ = 3,4,5,...,3n+2,
5 (z,y) = ka (z) Yl; (y), 1< f<n (32a)

where

f=i-2—n-1NT(‘_;—g> (326)
Similarly, for the companion set of trial functions
¢y = X1, (2)Yg,(y), LS g<m (32¢)

in which
for g=j—2-—n-INT ('7—:—?-> (32d)
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where INT( ) implies truncation to the corresponding integer value.

The functions Xi, and Yy, are each chosen from two different families. The indices k}
and £ f. determine the order of combination of functions X} ’ and Yy, into ¢s, and hence they
depend on f, which in turn depends on i according to Eq. (32b). Because the interest is
in low-aspect ratio wings, the dependence of ks and £ on f is such that the spanwise and

chordwise functions are about equal in number or

1/, n

£f=f—§(d -d) f=1,23,...,5 (33a)

1
£f=-2—(2f—n—d2+d) f=f2"-+1,§+2,. n ' (33b)
kf=1—d—~{ f=123,...,n (33¢)

where
d = NINT,/2f f=1,2,3,...,52‘- (34a)
n n
d = NINT\/2f -n f= §+1, §+2,....,n (346).-

and NINT( ) implies rounding to the nearest integer value. It is assumed in Eqs. (33) and
(34) that n is an even integer.

The chordwise functions X} , (z) are segments of a sine function with an appropriate
number of zero crossings. Accounting for wing sweep and the variable limits of z, Xy,
actually become functions of both z and y. The first family of chordwise function are chosen

as

kL 3 z —ytannr
= —_ ke — — <z<
Xk, (z,9) sm{ 1 +7r(kf 2) [r—y(ta.nnL—ta.nnT)]} LE<z<TE (35

The spanwise functions ng (y) are also appropriate segments of a sine function with an
appropriate number of zero crossings, or

y . [(2¢-1)rm

Yy, (y) = Ssio [Ty

,0<y<s (36)

The second family of functions X , consists of terms from a power series, except that the
functions alternate direction between the leading edge and the trailing edge. The wing sweep
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requires shifting and scaling as before, resulting in

xy@m)=«rh+o4ﬁd—«—n”z+h+w—nhhmnm~wummywzv

+ (tannT — tannz) y] )INT(J!—), LE<z<TE (37

where INT( ) implies truncation to the corresponding integer value. Equation (37) appears
complicated but it merely represents a power series shifted, scaled, and alternating in direc-
tion so as to accomodate the swept boundaries. The second family of spanwise functions is
simply e

nxw=(%(2) 0<y<s | )

L]

The algebraic eigenvalue problem is assembled inside a double loop for f and g from 1
to n. The entries of the matrices M, K, K4 and H are given by Egs. (21,) (23), (25) and
(26), respectively.

The complete set of two-dimensional quasi-comparison functions is expressed in terms

of f through £5 and ky as follows:

2
Y =%sinay, f=3,4,...,"; Jkp=1 (39a)
¢ =%sinay, f=3,4,...,n+2, k=2 (390)
¢5 =%sinay sinb—t;%‘-iﬂ, f=3,4,...,n;-2 , kf2>3 (39¢)
N
¢,=(%> ,f=’”2’4,.,.,n k=1 (40a)
N .
z (Y n+4
=—1 - = e k =
¢f - (8) ) f ) 'y Kf (40b)
1 z+yp|’ n+4
=M Nz — = >
r=my [L1-@+QEEE] p= T 2 (09
where
b=§%, e = tannr — tanng (41a,b)
(25 - 1)
p=—tann, a = —F—— (41c, d)

2s
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c=W(kf-‘3')’d="[%e+(kf"g)p] (41e.)
: m=(N) vt (419, h)
Q=-(-1)¥, s=INT (k—féﬂ) (414,5)

Similar series can be written for ¢, by replacing f by g and i by j. The simpler forms
for ¢ when ky = 1,2 are due to the simple form of the rigid chordwise shape functions
corresponding to the first two terms in Xk, (z), as mentioned previously. An example of the
series ¢¢(z,y) forn =6 should prove helpful. The six terms consist of three terms from each

-

of the two families, or

Y T = T g = Y ST |
¢1 = s s 2sy, ¢2 s sin 2sy, ¢3 = s sin 2sy (420'aba C)
2 z /u\2 2.5
ds = (2) g5 =2 (2) , ds = (2) (42d, e, )
S r S S )

6. NUMERICAL RESULTS

In presenting numerical results, it is useful to define several dimensionless quantities.

The frequency can be nondimensionalized as follows:

Pref 12
Q=wA = ] 43
[E!eft?ef ( )

Similarly, a speed parameter can be defined, yielding the dimensionless dynamic pressure

= 2qA2 _Pa.irUzA2 44
7 Eeptt; Ereftd (44)
reflref ref i ref

The quantities ( )zef are reference values. The quantities E,ef and pret are E3 and p for
the main structural material, ¢ is the total thickness at the wing root and leading edge
intersection. Other dimensionless parameters are taper ratio TR and the aspect ratio AR.
Extensive vibration and flutter results can and have been generated with this model. The
intent here is to develop and present the formulation, so that the presented results are merely
a summary.
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i. Convergence and accuracy

The convergence of the free-vibration eigenvalues of an anisotropic low aspect ratio wing
is considered in Fig. 3. The convergence rate of the first five nonzero eigenvalues is depicted
as the frequency parameter §) versus the number of terms in the approximating series. The
first two eigenvalues have zero value and correspond to rigid-body modes, which converge
immediately; they are not shown in Fig. 3. It should be pointed out here that a linear
combination of admissible functions must possess a minimum number of terms before it
qualifies as a quasi-comparison function. The number must be such as to permit satisfaction
of all natural boundary conditions. As soon as this number of terms has been réached,
convergence of the computed eigenvalues to the actual ones is relatively rapid.

The two flutter mechanisms of most concern are the bending-torsion mode and the body-
freedom mode. The body-freedom flutter mode occurs instead of the divergence mode when
the pitch degree of freedom is introduced. Reasonably accurate representations of the pitch
mode and the first two flexible modes, as well as fairly accurate representation of the third-
flexible mode, are required to capture these two mechanisms. The indications from Fig. 3
are that 20 terms are sufficient for this purpose, certainly for establishing a trend.

Convergence of the flutter dynamic pressure parameter for a forward swept anisotropic
wing is shown in Fig. 4. The flutter mechanism acting is body-freedom flutter. Reasonable
convergence has been achieved with 20 terms.

Figure 5 shows three frequencies corresponding to an isotropic plate of aspect ratio 5;
the computed values are compared with the exact values given in Table 11.4 of Ref. 14.
The plate is 1/2 inch steel and is fixed on a short side. The remaining three edges are free.
The clamped condition is simulated with the present model by taking very large values for
fuselage mass and pitch inertia. The results are quite acceptable. As expected from the -
discussion of quasi-comparison functions the matching is poor for small numbers of terms
but begins to converge quite rapidly when a certain critical number of terms is reached.

The accuracy of the flutter analysis is checked through a comparison with results obtained
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in Ref. 15 by Rossettos and Tong, which is one of the few works available on the flutter
of a plate with free edges in the supersonic region. Their model consists of a single layer;
constant thickness, squa.fe composite plate clamped at one edge and subjected to supersonic
flow on the upper surface. The aerodynamics is based on a variant of the piston theory that
converges to Eq. (15) for sufficiently high Mach numbers and with flow over both surfaces.
Comparison is for a square composite plate with a fiber orientation of 24°. The model derived

here predicted on the average flutter speeds 6% higher than those of Ref. 15.

ii. Free vibration results

The interest in the free vibration case is mainly for its relation to the flutter results.
The two flutter mechanisms, body-freedom and bending-torsion, dictate that concentration
is on the pitch mode and the first two flexible modes, although the first few flexible modes
above these will also have some influence. The convergence of the rigid-body modes, pitch
and plunge, is not an issue.

For body-freedom flutter, the most critical parameter is geometrical. If the wing is not’
swept forward or nearly so then this flutter mechanism cannot arise. Work by a number
of authors demonstrate a surprising influence of a tailoring layer swept just a few degrees
" off nominal. Body-freedom flutter can be eliminated, or pushed up to significantly higher
speeds, if a percentage of the spanwise plies are reoriented 10° forward. Two factors are at
work in this case and both are free vibration matters. When an orthotropic layer for which
E; >> E; is reoriented, bending begins to occur in the direction normal to Ej. The result
is an effective rotation of the elastic axis in the direction opposite to the reorientation of
the tailoring ply. The other factor at work is the necessary reduction of spanwise bending
stiffness that must accompany the reorienting of plieé away from the midchord. This second
factor eventually overpowers the first, so that ply reorientations are most effective when they
are small.

Figure 6 shows the frequency parameter of thé first flexible mode varying with the sweep
angle of a tailoring layer. The results for three wings are shown. An interesting phenomenon
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is observed in Fig. 6 for the low-aspect ratio wing. This wing has its highest bending stiffness
associated with a significantly a.ft swept tailoring layer, § = 10°. The implication is that
ta.iloriﬁéfplies might not be as effective for low-aspect ratio wings. This trend, shown to be
true in the next subsection, was not previously discovered due to inherent limitations of the
one-dimensional models commonly used.

Much has been said about the benefits of using the anisotropicity of a composite layup
to tailor the response of a wing. Such discussion has been limited almost entirely to ply ori-
entation. The dominant use of one-dimensional structural models nas forced this limitation
on the current investigation. One can easily suppose that distribution of the ta.iloriﬁg ma-
terial in both the spanwise and chordwise directions might significantly affect the response.
These trends are readily investigated with the current plate model. As ply distribution for a
Jow-aspect ratio anisotropic wing is varied from a concentration near the trailing edge to the
leading edge, there is a change in frequency of the natural modes. The associated frequency
parameters increase by 8%, 6% and 3%, respectively, for the first three flexible modes. The. '
bending-torsion separation increases by 5%. For a similar spanwise variation from wing tip
concentration to wing root, frequencies again vary. In this case, the increases are 34%, 14%
and 12%, respectively, for the first three flexible modes. For bending-torsion separation, the
change is slight at 2.5%. This reflects the increase in bending stiffness, which occurs when
material is shifted near the wing root. Clearly, the two-dimensional nature of this material
distribution has an effect on the free vibration outcome. It seems reasonable to expect that
the flutter response will also be affected, allowing a refinement of the concept of tailoring

with composites.

iii. Flutter analysis results

Two flutter mechanisms are of primary concern for a symmetric model of a wing with -
forward or aft sweep. The first is the classical bending-torsion flutter that can occur for a
wing of any sweep when the frequencies of these two modes begin to coalesce as the speed
increases. One mode, the torsion mode, turns downward toward a very stable condition just
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as the bending mode heads for instability. The two frequencies coalesce as the instability
approaches. Complete coalescence does not occur when the fuselage is capable of rigid-body'
motionr:.: The rigid-body pitch frequency assumes a nonzero value, which rises as the speed
increases. Without a tailored layup, the pitch and bending modes would surely combine
to cause body-freedom flutter before the bending-torsion coupling could arise. Recall that
bending-torsion flutter is unlikely at any speed for a significant forward sweep angle. It
is seen then that the same tailoring which eliminates body-freedom flutter by apparent aft
sweeping of the elastic axis also makes bending-torsion flutter possible. A trade-off is implied

and caution must be exercised when contemplating a tailored composite design solution.

Next, the characteristics of body-freedom flutter are considered. For a swept forward
orthotropic wing, the flutter mode will be body-freedom flutter, or divergence if clamped.
The bending-torsion case occurs at a much higher speed or may not occur at all for a large
forward sweep angle. The pitch mode is characteristically very lightly damped and will
move toward instability as the bending mode moves away from the imaginary axis. The’
pitch and bending frequencies coalesce eventually with increasing dynamic pressure rather

than separating, as would be the case for bending-torsion flutter.

Weisshaar et al.2 have reported a trend in the ratio Qgytter /Qundamenta for the two flutter
mechanisms just presented. In a particular case in Ref. 5, the ratio is equal to 0.26 for a
body-freedom flutter and to 3.40 for a bending-torsion flutter. The ratios for comparable

cases in this work are 0.42 and 2.64, respectively.

The effect of tailoring plies, particularly on divergence or body-freedom flutter has re-
ceived a great deal of attention. Figure 7 shows the flutter dynamic pressure versus the
tailoring ply angle for two orthotropic wings (AR =3 and AR = 6) and one isotropic wing
(AR = 8). In all three cases, body-freedom flutter is critical and small negative ply angles .
are expected to be effective. There is an implication in Fig. 6 that the low-aspect ratio
wing does not realize much benefit, because its maximum bending stiffness occurs for a
somewhat more aft swept configuration than the other higher-aspect ratio cases. This fact,
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demonstrated in Fig. 7, has important design implications for the design of low-aspect ratio
wings. If the model used does not account for low-aspect ratios, then this phenomenon will
be enti;ély missed.

Figure 7 shows the interesting and somewhat surprising result that flutter dynamic
pressure is strongly affected by very small changes in the layer orientation in the vicinity of
0°. Virtually all the analytical and experimental work on tailoring forward swept wings to
date does not consider low-aspect ratio wings.

Finally, the distribution of tailoring plies over the wing planform is considered. The
present model is ideally suited to investigation of parameters such as layer thickpesses; which
are free to vary in both chordwise and spanwise directions. Such distribution investigations
are likely to result in lower structural weight or higher flutter speeds, so that they must be
included in any search for an optimal wing design. The present model can be used to conduct
such investigations with ease. The results are impressive. In the chordwise direction, a flutter
dynamic pressure increase of 95% or decrease of 25% is observed, depending on whether the-
leading or tré.iling edge is favored for a linear material distribution, respectively. Similarly,
in the spanwise direction, the flutter dynamic pressure increases 29% if the wing root is
favored, but drops 35% if the plies are concentrated near the tip. These results are for an
orthotropic wing of aspect ratio 6 and a forward sweep angle of 20°. The tailoring layer is
swept 10° forward of the midchord line. These new results go a long way toward justifying

this more sophisticated model.

7. SUMMARY AND CO-NCLUSIONS

At the outset, the goal was to develop a structural model representing a modern aircraft
wing sufficiently well and one that is sufficiently simple to be used in a multidisciplinary
optimization problem. This goal has been accomplished with the development of a plate
model that accounts for shear deformation, variable layer thickness and orientation, fuselage
degrees of freedom and chordwise flexibility. Consistent with conclusions reached by previous
investigators, certain factors such as wing camber, unsymmetric ply stacking and rotatory
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inertia are sufficiently small for the problem at hand that they can be ignored.

The a.lgebra.ic eigenvalue problem was formulated directly from the extended Hamil-
ton prir;éiple. In solving the algebraic eigenvalue problem, the recently developed quasi-
comparison functions were relied upon to guarantee rapid convergence.

The numerical results obtained by means of the current model confirmed various trends
established by earlier investigators. They demonstrate that there is a very wide array of inter-
related parameters affecting the instability speed. The most clear outcome is a demonstration
of the necessity of a formal optimization approach to bring consistency to the investigation
of all the pertinent parameters.

The numerical results are limited to demonstration of the various features of the model
and opening forays into regions of investigation previously closed to simpler models. Nev-
ertheless, several previously unreported trends having significant bearing on the design of
modern wings were revealed. These initial inquiries open the door to further research and
refinement of the concept of composite tailoring. The results indicate that composite tailor- -
ing of forward swept wings may not be nearly as effective for low-aspect ratio wings as for
high-aspect ratio wings. This is an important result which virtually mandates a structural
model of at least the level of sophistication used here to accomplish optimal design of a
low-aspect ratio forward swept wing.

A second and also important new finding pertaining to two-dimensional models is the
merit of tailoring ply distributions. Beyond finding the optimum angle of orientation of
a tailoring ply, significant improvements in the flutter speed are left undiscovered if the
distribution is not also subjected to scrutiny. The results presented here indicate that the
tailoring plies are most effective when the distribution favors the leading edge and the wing
root. This result is also unobtainable with more conventional models and points once again
to the need of sufficient sophistication in modeling. Optimization methods are dictated by
a large number of interacting parameters, but such effort is wasted if the physical system is

not modeled with sufficient accuracy.
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The integrated design of a structure and its control system is treated as a multiobjective optimization problem.
Structural mass and a quadratic performance index constitute the vector objective function. The closed-loop per-
formance index is taken as the time integral of the Hamiltonian. Constraints on natural frequencies, closed-loop
damping, and actuator forces are also considered. Derivatives of the objective and constraint functions with
respect to structural and control design variables are derived for a finite element beam model of the structure
and constant feedback gains determined by independent modal space control. Pareto optimal designs generated
for a simple beam demonstrate the benefit of solving the integrated structural and control optimization problem.

Introduction

HE fields of structural optimization and optimal control have

made significant strides with the advent of the computer age.
Each discipline has independently generated useful methods and
computational tools for design. Yet. they share an approach in
which certain system parameters or design variables are selected
s0 as W optimize an objective function subject to a given set of
constraints. In structural optimization, the objective function is
often related to the cost of the structure, and it may involve the
weizht of the structure or the volume of material. The design vari-
ables typically characterize the material distribution or geometry
of the structure. Any quantity characterizing the response of the
structure. such as stress. displacement, or frequency. may be con-
strained to preclude structural failure. The structural response may
be static or dynamic, although time usually plays no particular role
in the formulation of the structural optimization problem.!? In
contrast, in modern optimal control a control law optimizing some
performance index (the objective function) over a given time inter-
val is synthesized. In the linear quadratic regulator (LQR) theory,>
control gains relating actuator forces to sensor outputs by means of
a linear transformation are typical control design variables. The
performance index is rendered independent of time by integrating
over the control time.

In common design practice, structural design precedes control
design. The mathematical model for the structural optimum. or at
least the final structural design, constitutes the plant for the control
design. The control designer then proceeds to synthesize the opti-
mal control system for the given plant. Uncertainties in structural
modeling of the plant are often considered to ensure that the con-
trol svstem is robust with respect to plant errors. The possibitity
exists that the plant can be altered so as to enhance performance in
conjunction with both structural and control optimization. As a
result of difficulties in lifting and deploying heavy objects such as
space stations, which can contain large solar arrays, antennas and
precision laser, or optical systems, the spacecraft structures must
be highly flexible. Moreover, stringent performance requirements

Presented as Paper 93-1670 at the AIAA/ASME/ASCE/AHS/ASC 34th
Structures, Structural Dynamics, and Materials Conference, La Jolla, CA,
April 22, 1993; received June 2, 1993; revision received April 11, 1994;
accepted for publication April 12, 1994. This paper is declared a work of
the U.S. Government and is not subject to copyright protection in the
United States.

*Assistant Professor. Depaniment of Aeronautics and Astronautics.
Member AIAA.

+University Distinguished Professor, Department of Engineering Sci-
ence and Mechanics.

for pointing accuracy, vibration suppression, shape control, etc.,
demand active controls to augment any passive damping. The goal
of integrated design is to take advantage of any synergistic interac-
tion between the flexible structure and its active control system.

The integrated structural and control design problem was first
considered by Hale et al.* Messac and Tumner' emphasized trans-
formation of the state space to modal coordinates and the depen-
dence of the weighting matrices on the modes. In formulating the
combined optimization problem Salama et al® established a prece-
dent followed by many others. They eliminated control design
variables by considering steady-state (constant) gains and select-
ing particular weighting matrices (identity) for the quadratic per-
formance index.

Haftka et al.” minimized control effort through structural
changes while maintaining specified damping ratios. However, the
damping ratios of the lower modes decreased. and the frequency
response magnitude and decay time increased. In another early
study, Venkayya and Tischler® reached a different conclusion,
namely, that a nominal truss model and a structurally optimal truss
had nearly the same control design for regulating a disturbance.
They considered a disturbance dominated by the first mode, but
both structural designs had the same fundamental eigenvalue, per-
haps explaining the similar control designs. Miller and Shim’ also
considered the same class of disturbances, i.e.. an initial displace-
ment representing the response to a static load.

Rew and Junkins' searched for optimal state and control
weighting matrices for the quadratic performance index but did not
consider any structural variables. Bodden and Junkins'! minimized
some unspecified robustness measure while placing closed-loop
eigenvalues in a desired region. When the structural variables were
included, a sequential approach was used. McLaren and Slater'?
employed a similar homotopy continuation method that converged
only atter about 750 complete analyses for one case, and after LlOh
of CPU time on a Cray Y-MP supercomputer for another.

Lust and Schmit'? searched for structural variables and linear
output feedback gains on equal footing for the steady-state
response to deterministic harmonic loading. Special attention was
paid to developing explicit approximations to the highly nonlinear
implicit response functions. Later, Thomas and Schmit'* extended
this formulation to problems with noncollocated actuators and sen-
sors, as well as stability constraints on the complex eigenvalues.
Sepulveda et al.'’® extended to complex eigenvalues Canfield’s
Rayleigh quotient approximation (RQA) for eigenvalues of con-
servative systems.!® Based on the complex RQA. Thomas et al. '/
improved the approximations for damping and control forces.

Only Belvin and Park'® appear to have taken advantage of inde-
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pendent modal space control® (IMSC) to treat the integrated struc-
tural/control problem. The authors did not claim to have found the
integrated optimum, rather they used IMSC to decouple structural
and control design by determining the primary influence of the
structural design on the control objective.

A novel approach proposed by Messac et al.'® combined distur-
bance rejection and command following performance errors in a
quadratic performance norm. One of the final designs was charac-
terized as nonintuitive, because the second frequency was reduced
by half, whereas in separable design structural optimization would
normally stiffen the second mode. increasing its frequency.'® A
comparison of designs obtained for two simple truss structures was

made by Rao?® for various objective functions.

Problem Statement

We are concerned with a linear, time-invariant, distributed-
parameter system. Following spatial discretization, the equations
of motion are given by

M) )+ C)g (1) +K(v)q(t) = Dulvg, v, 1) 1)

where ¢ is the configuration vector, M the mass matrix, C the
damping matrix, and K the stiffness matrix, all parameterized by
the n, vector v, of structural variables. The system is regulated by a
vector of control forces u(v,, v., t) which is also parameterized by
the n-vector v, of control design variables, and transmitted to the
structure according to the load distribution matrix D. The struc-
tural, and control vectors can be combined into the complete
design vector v = [vST v(T]T.

Modal Space Control

If the structure is subject to proportional viscous damping, the
uncontrolled svstem can be decoupled by means of the classical
modal transformation. By the expansion theorem,?! this transfor-
mation is given by

n

g(1) = Y om,(1) =1 @)

i=1

where @ is the classical modal matrix and m the vector of modal
coordinates. The eigenvectors are orthogonal with respect to the
mass matrix and can be normalized so as to satisfy @M =/,
®TKP = Q, where Q? is the diagonal matrix of eigenvalues. Syn-
thesizing a control law is more convenient when the left side of Eq.
(1) is transformed to diagonal form. To this end we insert Eq. (2)
into Eq. (1), premultiply by &7, assume that damping is of the pro-
portional type,?! and obtain

(1) +20Q () (N + QL (r) N (D)= (v)Du(v,, v, 0)=f (1)
3)

where { is the diagonal matrix of modal damping factors, assumed
to be constant for the class of structures under consideration, and
S(1) is the modal force vector.

Typically, not all n,, modes need be controlled, so the control
design problem can be truncated. To this end, we partition the
decoupled equations into nc equations for the controlled modes
and np equations for the residual modes. Consistent with this, the
modal matrix, the modal coordinate vector, and the modal force
vector have the partitioned forms @ = [D. ®p], = [ng nz]r,
and f(r) = [ fe(OT fonT J7, respectively. The controlled equa-
tions in Eq. (3) can be transformed to state space. To this end, we
introduce the state vector x = {T]Z- T']E]T. Then, the state equations
for the controlled modes can be written in the matrix form

* =Ax+Bu 4)
where
0 ! 0
, B
c 289 oD

are coefficient matrices. For linear feedback of the controlled
modes, the control law is

fe)= deDu(t) = -G - Hic ©)

where the modal control gain matrices G and H are constant in the
steady-state case. To implement modal feedback control the modal
displacements and velocities must be extracted from the system
outputs. Application of the second part of the expansion theorem?’
provides the transformation of physical to modal coordinates

Ne (1) = OL Mg(1) (7a)

L M4 (1) (7b)

Ac (D)

in which the g () are deterministic physical coordinates. State esti-
mation is not considered here; however, if at least as many sensed
outputs are available as controlled modes, modal state estimation
is not an obstacle.> Meirovitch et al.?? successfully demonstrated
the use of modal filters based on Egs. (7) for control of an experi-
mental beam by means of IMSC.

Although they are not controlled, the residual modes receive the
excitation

Jolt) = D Du(r) (®)
The closed-loop system is described by.
¥ =Ax E)

where

a0 ] (10)
-G -Hj

is the closed-loop plant matrix. in which

G=Q.+G, H=20.Q.+H an

Independent Modal Space Control

The general idea of the IMSC method is that the control force
for a given mode depends only on the modal displacement and
velocity of that mode. Hence, the independence of open-loop
modal equations is preserved for the closed-loop equations. For
self-adjoint systems, the 2ns X 2n. matrix Riccati equation for
linear optimal control reduces to a series of n independent 2 X 2
matrix equations for each of the controlled modes. It follows that,
in the case of IMSC, the modal gain matrices G and H in Eq. (6)
are diagonal. Equation (6) yields the modal control forces, from
which we obtain the actuator forces

u(®)= (®LD) o) (12)

When the number of controlled modes and actuators is not the
same, the exact inverse (@ED)“ in Eq. (12) can be replaced by a
pseudoinverse, but the modal forces will be only approximately
independent, depending how close ®L D is to a square matrix.

In optimal IMSC, the weighting matrices for the modal space
quadratic performance index are assumed to be diagonal, so that
the performance index for the steady-state case can be expressed
as the sum of independent modal performance indices in the form

|
J= iJ'O(x’Qx+fCTRfC) dr

77(- o
= %ZJ @A roimi+r ) di (13)
0

r=1
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As a result, the 2n- X 2n matrix algebraic Riccati equation re-
duces to n. independent 2 X 2 matrix algebraic Riccati equations.
The latter have the analytic solution

T 2
g, =00 +r, -,
[
h, = \r, +2g.. r=1,2,...,n¢

One choice of control design variables is the modal control
force weighting factors v. = [rry ... r,,C]T, because they determine
the modal gains for IMSC optimal control uniquely. Alternatively,
all of the r, could be eliminated by using Egs. (14) to solve for
each A, in terms of g,, or vice versa. In the former case,

(14

a

2
+0 2
gr r —(1); (15)

hr(gr’mr) = ’\Jr:l +2gr' r:l = T

r

whereas in the latter case,

g (h,0,) = {/M(%)z—z}wf (16)

Now, either the g, or the A, can be taken as control design vari-
ables.

Pareto Optimal Solutions

A natural approach to integrating design requirements from two
or more disciplines is to optimize a vector of cost functions. Ide-
ally, all of the criteria in the vector would be optimized simulta-
neously. Because all criteria cannot be optimized at once. an
understanding of what constitutes a vector optimum is required.
Following Koski,”® we state the multiobjective (multicriteria or
vector) optimization problem as

F*(v*) = min F(v) (17a)
ve Q

where F:Q — R™ is a vector objective function
F() = [F,(») F,(0 ... F, 0] (17b)

and its components F;:Q — R, i=1,2, ..., mare the criteria. The
design variable vector v belongs to the feasible set QcR",
defined by the vectors h and g of equality and inequality con-
straints, respectively, as

Q= {ve R"|h(v) =0, g(v) <0} (17¢)

where vector inequalities are understood to apply individually to
each component of the vector. (Distinction between the vectors g
and A for constraint functions and modal gains g, and 4, should be
clear from the context of the equations.) In general, no unique
point exists that optimizes all m criteria simultaneously. Pareto
defined the vector optimum v* as that for which there exists no
feasible vector v that would decrease some criterion without simul-
taneously increasing at least one other criterion.

A popular technique for generating Pareto minima is the con-
straint method.”* In this method the vector optimization is replaced
by

Frvh) = yeg“(illlk(e)Fk(V) (18a)
where
Q (&) = {v:F(v)S¢g, i#k} (18b)
and

e€ By = {|€8 .- & &8, ] }:RE) 28 (180)

One criterion is taken as a scalar objective function whereas the
remaining are constrained by a set of constants €; such that a feasi-

ble solution exists. Again. parametric variation of the €; generates a
set of Pareto minima. An important implication for the problem
under consideration is that any single objective function may be
minimized whereas the others are treated as constraints. The
choice of criterion is at our discretion. The same Pareto optimal
designs should be generated by minimizing either structural
weight or the quadratic performance index, for example, while
constraining the other. Of course. this assumes that each scalar
optimization finds the global minimum or that the same set of local
minima will be found for each choice of objective function. The
constraint method is the basis for secking Pareto optimal solutions
of this research. Thus, the focus is on determining efficient meth-
ods to solve Eqs. (18) for the integrated structural and control
problem.

Theoretical Development
Performance Index for Integrated Structural and Control Design

In using the LQR theory? for optimal control, one determines a
control law that minimizes a quadratic performance index for a
given positive semidefinite state weighting matrix Q and a positive
definite control weighting matrix R. The choice of weighting
matrices is otherwise at the discretion of the control designer. Each
choice produces a different optimal control. In practice, the
designer alters Q and R to balance system performance and control
effort. As an example, one particular choice might result in satura-
tion of an actuator in some simulation. Then, the designer might
increase the weighting factor(s) associated with that actuator. In
this sense, the performance index is not used to compare candidate
control laws. Instead, other criteria are used as a basis for compari-
son in the simulations. The dilemma is compounded in integrated
structural and control design, in which performance for different
plants and control laws must be compared. Therefore, the question
of an appropriate performance measure for controls is a critical
one. We propose here that the time integral of the total system
energy be used as the single. unique. and physically meaningtul
performance measure. The total system energy consists of the
kinetic and elastic potential energy and the energy expended by the
control system. As mentioned in the literature review. the struc-
tural energy has been used frequently to define a unique state
weighting matrix Q. Defining the control weighting matrix R is
more arbitrary. Two interpretations of “control effort™ are consid-
ered next.

The control effort in the performance index is taken to represent
the energy expended by the control system, which is often
assumed to be proportional to the square of the control inputs.
When the input represents an actuator force, the energy to actuate
certain mechanical systems might be proportional to the square of
each actuator’s force. In this case, we expect the energy expended
by each actuator to be independent of the others, in which case R is
diagonal. Assuming that the proportionality factors of each actua-
tor are known a priori, we consider a performance measure for‘the
system defined by Eq. (1) in the form '

7= lJ' UK OV TR | (19)
2o 14) {0 M| 4

where R is a unique weighting matrix of factors for the control
energy.

Belore procecding any further, let us consider alternative mea-
sures for the control effort. The weighting matrix R = DTK™'D was
proposed by Venkayya and Tischler® and employed by Rao™ and
Belvin and Park.'® This weighting matrix provides a quasistatic
measure of the energy imparted to the structure by the control sys-
tem. It can be derived by assuming that the forces are applied qua-
sistatically to the structure by the control Du(t). The elastic energy
imparted to the structure has the expression

(1/2)[Du(t)]T(}(t) = (1/2) [Du(t)]TK_lDu(t)

= (1/2) u()Ru(?) (20)
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where § (1) represents the static displacement due to the quasi-
static force Du(r). However, one could as well consider the energy
imparted to the structure by the control force vector Du(r) applied
impulsively. Both are approximate measures of the actual energy
used by the control system to do work on the structure.

Next, we consider the actual work done by the actuator forces,
or

W = J"qTF(z)d: = J.tﬂrf(r) dr = W+ W, @1
0 0

where

W, = J' fie f-(1)dr, W, = J’ Mefe(Ddt (22)
1] (0]

are the work done by the. controlled modes and by the residual
modes, respectively. At this point, we define the useful work as the
work done by the actuator forces on the controlled modes, i.e., We,
and note that for IMSC we can evaluate W analytically. Because
the modal forces are linear in the state variables, we assume that
the integral has a quadratic form, or

_[Otng (%) fo () dt = xT(ORx (1) 23)

in which x = [ng I']Z]Tis the modal state vector. Differentiating
both sides of Eq. (23) with respect to time, we have

Ne (1) fo (1) = £ (1) Rx(1) +x" (1) Rx() 4)

Substituting x = [T]Z- T']Z-]T and Eq. (6) into the left side of Eq. (24)
and Eq. (9) into the right side, we obtain

L0 =(1/2)G x=x [ATR+RA]x (25)
~(1/2C  -H

Equation (25) will be satisfied for an arbitrary state only if the
matrices in brackets are equal. Because for IMSC the various sub-
matrices are diagonal, insertion of Eq. (10) into Eq. (25) yields

GH'H-G 0
0 H'H

R (26)

=1
T2

where G and _f_] are defined by Eqs. (11). When no natural damp-
ing is present H = H and Eq. (26) reduces to

2
R:%QCO Q@7
0 I

which is precisely equal to the modal state weighting matrix Q ren-
dering (1/2) x7Qx the sum of kinetic and strain energy. This result
is to be expected, because for a conservative structural system the
change in energy from the initial time to a quiescent state at the
final time must be dissipated entirely by the control system.
Hence, if we define control effort as the useful work done by the
control system, it is sufficient to merely include the state weighting
matrix in the performance index. It is important to stress here that
Eq. (19) with R = 0 represents a performance index for comparing
two systems and not a performance index used to derive LQR con-
trol gains.

In summary, in seeking an appropriate and physically meaning-
ful control performance measure we arrived at two alternatives.
One employs the unique matrix R in Eq. (19) yielding the energy
expended by the actuators over time, assuming that such a charac-
terization of the control system is available. In the absence of
knowledge about R, the second alternative is to consider the useful
work done by the control system over a given time interval. For a

conservative plant the useful work is simply the change in internal
energy of the plant. Therefore, when comparing two systems, it is
sufficient to use the unique state weighting matrix that produces
the total structural energy and let R = 0 when comparing two sys-
tems. Of course, the second choice ignores control spillover, which
must be small for any feasible system. We also assumed the con-
trol gains were such that the actuators did not reach saturation.
Next, we derive the time-invariant form of the performance index
and formulate constraints for the actuator forces.

Independent Model Space Control Time-Invariant System Energy

We wish to minimize the time integral of the system energy, Eq.
(19), as a function of the vector of structural parameters v, deter-
mining the natural frequencies and the vector of control parame-
ters v, determining the control gains. Because the plant and control
are taken to be time invariant, the performance index can be
expressed without regard to time. assuming that the closed-loop
system is stable. The performance index. Eq. (19). can be written
in the partitioned modal state space form

{ncw*)}f Py Py {ncw*)} ”
J= + +
: Nc(0) Prz Py In-(07) @8)

The positive definite symmetric coefficient matrix P is a solution
to the Lyapunov equation

Q.+ AP +PA.=0 (29)
for

RN :
0. = ﬁ) (I)J+[Gn H. V' R(G, H,] (30)

where G, and H,, relate the actuator forces to modal coordinates
according to

u(y=-Gye— HyMie (31)

The use of IMSC in formulating Eqs. (28-30) has significant
implications. First, the actuator gains can be synthesized from the
modal control gains by means of Eq. (6) or

T -1 T -1
G, = (9:D) G, H, = (®:D) H (32)
As a result, even if R is diagonal in Eq. (30), the modes recouple
Eq. (29) via Egs. (32). However, choosing R = 0 becomes quite
attractive when using IMSC. Then Q. becomes diagonal, thus
decoupling Eq. (29) and permitting an analytical determination of
the diagonal partition matrices of P. Indeed, inserting

_ Py Pp
P = r (33)
Py Py

and Egs. (10), (11), and (30} in to Eq. (29), we obtain

(Diz (2C,0,+ 1) 20’1‘2+g:‘ (34a)
p - 2 + a
M 2(0):+g’) 2(2§,wi+hi)
P = ———— (34b)
Y 2(wi+g)
2(1),.2+gi .
= i=1,2,...,nc (340)

P2 B .
2o +g,) (28w, + h)

mmmy —

°
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A critical assumption must be examined for properly minimiz-
ing the integrated objective function, Eq. (28). An arbitrary exter-
nal disturbance for a fixed plant is often assumed to induce an arbi-
trary initial state of unknown direction but constant magnitude.
Minimizing Eq. (28) for this case is then shown to be equivalent to

minJ < min [tr(P)] (35)

In earlier approaches to the integrated problem, this assumption has
often been made in a casual manner. However, if design of the plant
itself is under consideration, the initial state depends on the struc-
tural properties. Indeed, an arbitrary external disturbance of given
magnitude produces a corresponding initial state depending on the
as yet undetermined stiffness and mass of the structure. Therefore,
the sensitivity of the initial state dx,/dv_, cannot be ignored. Cal-
culating dx,/dv,; involves the assumption of a certain disturbance,
e.g., an impulsive force of given magnitude or at least assumed sta-
tistics governing the nature of the disturbance. The same assump-
tions apply to calculating actuator forces, as well. For a given dis-
turbance, the derivative of the performance index, Eq. (28), with
respect to structural and control variables is

aJ _ 10P Bvo
xOa r0+2vo >

(36)

Sensitivity of the first term requires differentiation of Eq. (29). The
second term in Eq. (36) involves structural variables only. Both
terms are included in the following derivation for the IMSC perfor-
mance index.

Consider an impulsive disturbance represented by the force vec-
tor 06(r) where Q is the intensity vector and 8(¢) is the Dirac
delta function. Solution of the modal counterpart to Eq. (1) with
the right side replaced by the impulsive force 03(1) results in the
mmal modal velocities

M0") = d (v)O (37)

By substitution of Eq. (37) into Eq. (28), the performance index
can be simplified to

T = 770" P, (0% = (L) Pp(DrLO)

=&'P,d =Y p,é (38)

where §; is the ith component of the vector b= @EQ , o that the
control objective represented by Eq. (38) a simple weighted sum of
the diagonal elements of P,y(v,,v.). It should be pointed out here
that an initial condition due to an impulse is more realistic than a
static preload and applies to unconstrained as well as to con-
strained structures. Sensitivity of the integrated IMSC perfor-
mance index for an impulsive disturbance, Eq. (38), is considered
in the next section.

Independent Modal Space Control Performance Index Derivatives
Differentiation of Eq. (38) with respect to the structural vari-
ables leads to

"¢

9Py,
2 Z[zpn b a¢ 5 (39)

sk i=1 :k

The partial derivative term 99, /dv,, in Eq. (39) requires natural
eigenvector derivatives. An explicit expression for the partial
derivative term

ap:z h[ a(L),»
= — - (40)
Yk 4(l+g) a4 h/w] O

was derived by differentiating Eq. (34c¢). The structural frequency
derivative in Eq. (40) is well known.! Note that its coefficient on
the right side of Eq. (40) is positive,

9Py

=>0 4n

0w,
so that, ignoring the modal sensitivity appearing in Eq. (39), we
conclude that a reduction of the performance index implies a reduc-
tion of structural frequencies, i.e., a softening of the structure. This
result is in opposition to the heuristic conclusion reached by Belvin
and Park,'8 but agrees with the observation of Messac et al.!®
Differentiation of Eq. (38) with respect to the control design
variables leads to

oJ apv_k 2
aTCk Vi

(42)

The partial derivative with respect to a control design variable is
the partial derivative with respect to the IMSC modal rate gain, v,
= h;. Hence, by differentiating Eq. (34¢) and using Eq. (16) for
optimal IMSC gains, the partial derivative on the right side of Eq.
(42) can be shown to have the form
aPzzi —0),.2 (D? +8/2

on, 2 2 T2 bl (e “3)

P2(0; +g) JA+h /0] Ri(0+8)

and note that dp,, /0h;<0so that decreasing the performance
index implies increasing the modal gains, as expected. However,
the modal gains will be prevented from becoming infinitely large
by constraints on the actuator forces posed in the next section.

Actuator Force Constraints

Actuator forces are constrained to be smaller than some maxi-
mum magnitude for all time. To create a finite number of con-
straints for the integrated optimization. the actuator inputs (forces)
can be evaluated at only a few peak times. Peak actuator forces
occur either at = 0 or when the derivative of the force with respect
to time vanishes. In the first case. the peak inputs for each actuator
are easily determined from u(0") = —Gro Inserting Eqgs. (6) and
(37) into Eq. (12), the initial IMSC actuator forces coqespondxnv
to an initial velocity caused by an impulse of intensity Q are

u(0")=—(®LD )Y HOLQ (44)

Subsequent peak inputs first require determination of the peak
times from the transcendental equation resulting from differentiat-
ing the scalar form of Eq. (12)

)

du (¢ N
= “éf ) =-GAx(), VeN, (45)

where f;j represents the jth row of the gain matrix G Solution of
Eq. (45) generates a set of p; peak times T, = {t, ., 1, foreach
of the n, inputs. For IMSC the modal states are known explicitly in
terms of the design variables and time.2*

Actuator Force Derivatives

Consider first the actuators forces at time 7 = 07 due to an
impulse. The initial state vector

0
x(0%) = { of Q} (46)
c

does not vary with time or control variables, only with structural
variables. Therefore, we divide the possible derivatives into those
that depend on structural variables v, and those that depend on
control variables v,. Differentiating Eq. (44) with respect to struc-
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tural variables first and noting that H does not depend explicitly on
Vg, we have

TA T
ou(0h) B ro-1] 3(Pc0) & RS
avxk"—“(CDCD) I:H———av_,k _av_‘kD((DCD) H( CQ)
47
k=1,...,n

where the modal gradients 0®./dv,, were first encountered in
Eq. (39). Differentiation of Eq. (44) with respect to control vari-
ables yields

du(0") _ T o100 g7 5 -
W_-(¢CD) avd{_( c¥), k=1,...,n.  (48)

The modal rate gains along the diagonal H are themselves the con-
trol design variables, so that 0H ~/0dv,, is a matrix of all zeros, ex-
cept for entry in the kth row and column which is equal to one. Ac-
tuator force derivatives at subsequent peak times can also be
derived,? but were not considered in the examples to follow.

Example: Simply Supported Beam with
Three Actuators

The performance index, Eq. (38), was minimized for the pur-
pose of designing the IMSC modal gains for a uniform beam with
three actuators, described in Ref. 3 (Fig. 1). The material proper-
ties are given in unspecified consistent units such that EI/(mL?*) =
1. The disturbance was a unit impulse at 0.43L. The force actuators
were located 0.15L, 0.55L, and 0.73L of the span. Coupled control
to damp out the first eight modes produced a maximum actuator
force of magnitude 3.8 units.> The first 12 modes were used to
simulate the closed-loop response of the beam to the unit impulse.
Time histories of the midspan deflection of the beam and the cor-

l Impulse

F(t) = actuator forces *

]

w7 | F %»

Fig. 1 Simply supported beam with three actuators.
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Fig. 2 Time histories of beam with three actuators.

Table 1 Independent modal space control gains
for simply supported beam

Case Mode i pi 8 h; &
Initial 1 1.0 0.4987 14133 0.0714
IMSC 2 1.0 0.4999 1.4142 0.0179
3 1.0 0.5000 1.4142 0.0080
Optimized I 0.1769 2.7874 3.3510 0.1674
IMSC 2 0.1391 3.5909 3.7910 0.0480
3 0.1639 3.0500 3.4930 0.0197
Optimized 1 0.1955 2.517 3.186 0.1782
structure 2 0.0989 5.045 4.494 0.0614
and IMSC 3 0.1505 3.322 3.646 0.0199

—— 18DV
—o— 5SDV

—x— 108DV

Performance Index (System Energy)
o

05 06 07 08 09 1 11 12
Structural Mass

Fig. 3 Pareto optima for simply supported beam.

responding actuator forces appear in Fig. 2 for three cases using
IMSC, described next.

IMSC was used to control only the first three modes. For unit
values of the modal contro] weighting factors r, in Eq. (13), actua-
tor forces were lower and their time history smoother than for cou-
pled control, but at the expense of decreased damping. Next, IMSC
modal gains were treated as design variables and Eq. (28) was
minimized subject to constraints on each actuator force. The upper
limit on the actuator forces, 3.8 units, was taken as the maximum
value from the original example. Only a single call to an IMSL
nonlinear optimization subroutine was needed. Results in Fig. 2b
demonstrate higher damping and a 14% reduction in the maximum
deflection without saturating the actuators. The modal control
weighting factors and IMSC modal gains for each case are given in
Table 1. This case represents the best performance possible by
optimizing control gains alone without design structural variables.
In other words, it is the optimal control for a fixed structure.

Next, structural design variables were introduced. To establish
the relationship between bending and inertia properties (i.e., £/ and
ml), a particular cross-sectional shape was specified. A circular
tube of outer radius R = L/100 and thickness 7 = R/10 was consid-
ered. Thickness was selected as the structural design variable while
the outside radius remained fixed. The minimum thickness allowed
was I, = R/40, whereas the maximum thickness was ¢, = R/5.
To approximate the continuous distribution of material along the
span, an Euler-Bernoulli beam was modeled using 100 finite ele-
ments. Each structural design variable controlled the thickness of a
group of elements located symmetrically about the midspan. The
performance index, Eq. (38), was minimized while requiring no in-
crease in total mass and limiting the actuator forces. Also, the fun-
damental natural frequency was constrained to be at least 80% of
its initial value. The integrated optimization problem may be stated
as minimizing the system energy

min J(v,., v,) (49a)

Vv
s
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Fig.4 Optimum beam profiles for 10 structural design variables.
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Fig. 6 Iteration histories for mass = 1.

subject to behavior constraints on nondimensional mass, funda-
mental frequency, and actuator constraints,

m(v) €1 (49b)
2 2
o, (v,) 20.8(w)), (49¢)
ui(ve, vs, 1) <38, j=1,2,3 (49d)

as well as side constraints
R/40 S vy SR/S, k=1,2,...,10 (49¢)

0< vy, k=1,2,3 (49¢)

Structural design variables v, (tube thickness) and control design
variables v, (modal gains) were determined simultaneously. The
time history in Fig. 2¢ indicates a 29% reduction in maximum
amplitude without loss of damping or exceeding the actuator limit.
This third case demonstrates the benefit of multiobjective optimi-
zation. Performance improvement over Fig. 2b was achieved by
simultaneously determining control design variables and structural
design variables. '

Pareto optimal solutions were generated by parametrically vary-
ing the mass constraint. The resulting Pareto optimal sets in Fig. 3
show that not many structural design variables (SDV) were needed
to approximate the Pareto optimal objective function values. Re-
sults for more than 10 structural design variables were not shown
because they were indistinguishable from the curve for 10 vari-
ables. The same Pareto curves were generated by minimizing the
mass subject to a constrained performance index. The resulting
beam profiles in Fig. 4 for minimizing the performance index with
10 structural design variables were identical to those found by
minimizing mass. Of course, the true optimum structural design
entails a continuously varying cross section, simulated in Fig. 5 by
using 50 structural design variables for mass constrained to unity
(a refinement of Fig. 4b).

The effect of the eigenvector derivative terms appearing in Eq.
(42) is demonstrated by the iteration histories given in Fig. 6. The
curve labeled “SQP” represents a solution of the integrated optimi-
zation problem using sequential quadratic programming to solve
Egs. (49) directly. The curve labeled “Approx. Concepis™ is a
more efficient solution in which all structural and control functions
are approximated by first- or second-order Taylor series.* The
resulting approximate subproblem was solved iteratively until it
converged to the exact solution found by SQP. The third curve.
labeled “No Eigenvector,” was an attempt to solve the integrated
problem while ignoring the first term in the summation of Eq. (42).
Without the eigenvector sensitivity. the solution converged to a
distinctly different nonoptimal design with higher system energy.
This alternate design was achieved only when using approxima-
tion concepts. The direct SQP algorithm failed to converge at all
when eigenvector derivatives were ignored.

Conclusion

The integrated structural and control design problem was posed
as a multiobjective optimization problem. The total energy inte-
grated over time was identified as the performance index for con-
stant feedback gain closed-loop control. Independent modal space
control enabled a closed-form solution of the system energy as a
function of open-loop frequencies, modal damping, and modal
gains. Peak actuator forces were constrained to be within pre-
scribed limits. Pareto optima for the multiobjective optimization
problem were generated using the constraint method. The resulting
scalar optimization problem was efficiently solved by forming an
explicit approximate subproblem. Results revealed that eigenvec-
tor sensitivity was important to converging to the integrated opti-
mum. More importantly, an integrated design approach clearly
improved the performance of the closed-loop system without an
increase in structural mass. Once the superiority of the integrated
approach was established, Pareto optimal curves were developed
to illustrate the extent to which structural mass changes could
affect the closed-loop performance index.

Several important insights were gained from this research. First,
a unique and physically meaningful performance index such as the
total system energy lends itself to a fair comparison among candi-
date structural and control systems. Furthermore, IMSC offered
the advantage not only of computational efficiency, but more
importantly, it permitted the derivation of explicit expressions for
the performance index and its derivatives. We infer from these
derivatives that the total energy in the system imparted by an
impulsive disturbance is reduced by softening the structure, i.e., by
reducing its natural frequencies. Moreover, the eigenvector deriva-
tives account for the effect structural changes have on the initial
condition resulting from fixed external disturbances. The open-
loop modes also determine the effectiveness of actuators. Thus,
structural changes may help satisfy constraints on actuator forces.
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Explicit actuator force constraints were incorporated as the physi-
cal means by which control gains were bounded. This approach of
minimizing the system energy and structural mass subject to con-
straints on frequencies and actuator forces made integrated struc-
tural and control design a tractable problem. The use of IMSC and
the selection of modal gains as the control design variables were
the key to producing computational solutions for Pareto optimal
designs, thus demonstrating the tradeoff between structural and
control objectives. '
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Abstract

The equations of motion for a nonuniform, aniso-
tropic thin-walled beam are derived and applied to
the study of vibration and static aeroelastic instabil-
ity of slender tapered aircraft wings made of advanced
composite materials. Numerical results illustrate the
effects of anisotropy.transverse shear flexibility, pri-
mary and secondary warping, as well as of wing taper
ratio, and the implications of these effects on the vi-
brational and divergence instability characteristics are
discussed.

Introduction

The demands on advanced flight vehicles to
achieve the highest performance possible over the
broadest range of missions has stimulated a great deal
of research lately. Improvement of flight vehicle struc-
tural efficiency can be achieved by reducing weight,
controling wing deformations, as well as the aeroelas-
tic load distribution, increasing the flutter speed, in-
creasing control effectiveness, etc. Through the use of
advanced composite materials, the designer acquires a
great deal of freedom in carrying out structural and
aeroelastic tailoring. This amounts to taking advan-
tage of the light weight and the cross-couplings of com-
posite materials to optimize the response characteris-
tics.

To permit results useful in the design of advanced
flight vehicles, the structural models must be as com-
prehensive as possible, which implies that they must
include all the essential characteristics of real aircraft
structures. To meet this requirement, in a number of
recent studies! =%, a refined wing structural model of
advanced flight vehicles, including many effects unex-
plored heretofore, was developed and the implications
of the newly introduced effects were revealed.

One factor that has not received sufficient atten-
tion to date is the nonuniformity of the wing cross
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section. It seems that for composite aircraft wings
modeled as solid beams, the only results for nonuni-
form wings were presented in Refs. 3 and 6. However,
there appears to be no investigation of wing structures
modeled as nonuniform thin-walled beams. It is one of
the goals of this paper to develop a tapered thin-walled
beam model for slender swept wings.

Due to renewed interest in flight vehicles operat-
ing at supersonic and hypersonic speeds, a biconvex
cross-section profile of the wing will be considered.
In addition to cross-sectional nonuniformity, the thin-
walled wing model will also incorporate anisotropy and
heterogeneity of the composite structure, transverse
shear flexibility of the constituent materials and pri-
mary and secondary warping effects. Based on the
anisotropy of the material, the ply angles inducing the
most favorable elastic cross-couplings from the point
of view of aeroelastic and dynamic response character-
istics will be implemented.

The equations of motion and associated bound-
ary conditions for wing structure models as described
above, and permitting study the static aeroelastic be-
havior and vibrational response, are derived by means
of the extended Hamilton’s principle. Upon solving
the related eigenvalue problems, the influence of the
cross-sectional nonuniformity and of other nonclassi-
cal features is investigated.

Basic Assumptions

Under consideration is a structural model consist-
ing of a thin-walled beam and intended to simulate the
lifting surface of advanced flight vehicles. The cross-
sectional contour has a biconvex profile, with geomet-
rical characteristics varying linearly along the wing
span. (see Fig. 1). The model incorporates the follow-
ing nonclassical features (some of them used in Ref. 5):

i) Anisotropy of constituent materials,
i) Transverse shear flexibility,
iii) Primary and secondary warping effects and

iv) A tapered wing surface with geometrically similar
cross sections at all spanwise stations.

The latter requires the following linear distribution
along the span of the chord ¢(n), height b(n) of the mid-
line cross-section profile and of the offset e(n) between




the aerodynamic and reference axes

c(n) CR
{b(ﬂ)}=[1—ﬂ(1—0)l{bn} (1)
e(')) €R

where 0 = cr/cr defines the taper ratio, 5 = z/L
is the dimensionless spanwise coordinate, where L
denotes the wing semi-span, and the subscripts R and
T refer to the root and tip wing sections. Moreover,

R(n)=[1-n(1-0)]Rp (2)

in which R(n) is the radius of curvature of the circular
arc associated with the midline contour at section 7,
Rp is the radius of curvature of the root section of
the wing. Note that gpints on the beam cross sections
are identified by the global coordinates z,y, while z
is the spanwise coordinate. The assumption of in-
plane nondeformability of the beam cross section is
also adopted.

Due to the geometrical similarity of the cross
sections, the angles © between the axis y and the radii
R taken at points cg/2, ¢/2 and er/2 are equal, i.e.
Opr=67r=0=0,.

Kinematical Equations

In view of features iii) and iv), the primary warp-
ing function F,, becomes a function of both s and 75,
le.,

F,=F, (s,9)= /o‘ [rn (5) — ¥)d5 (3a)

where 24, (n)
n
y=v = —=ta 3b
(n) 5 (3b)
denotes the torsional function, in which A.(n) =
§ ra (5,m)d5 is the cross-sectional area of the beam
bounded by the midline contour at 7, s(n) denotes the
arc-length measured along the circumferential coordi-
nate (whose origin is arbitrarily but conveniently cho-
sen), § is a dummy coordinate associated with the s-
coordinate, §(-)ds denotes the integral along the closed

midline contour, r, (8,7) = z(s,n) j—z -y(s,n) g-z- de-

notes a geometric quantity (see Ref. 5) and f(y) =
§ ds (n) is the circumferential contour length at 1. Af-
ter lengthy calculations one obtains

sm=rm(1-22) )

Ac(n) = R?(n) (26, - sin 20,) (4b)
B(n) =4R(n)O, (4c)

As readily seen, in the case of the nonuniform thin-
walled beam theory, v, A, B, F., r, and a are

functions not only of the circumferential coordinate
s but also of the spanwise coordinate z. As a result,
free warping is precluded for the problem at hand.

In accordance with i)-iii), and in order to reduce
the three-dimensional elasticity theory of beams to an
equivalent one-dimensional one, the components of the
displacement vector are expressed as

u(z,y,2,t) =u,(2,t) — y(s,2) ¢ (z,1) (5a)
v(z,¥,2,t) =v,(2,t) + 2(s8,2) ¢ (2,0) (5b)

w(z,y,2,t) =w, (2,t) + 0. (2,t) [y (s,2) = "?Tz]

+6, (z,t) [z (s,2) + n%]

—¢'(z,1)[Fu (8,2) + na(s,2)] (5c)

in which F, (s,z) and na(s, z) are related to the pri-
mary and secondary warping functions, respectively,
and n denoting the coordinate in the thickness direc-
tion. In addition,

a(s,z) = -y(s,z)dy/ds — z(s,z)dy/ds (6a)
and

0z (z,t) = yys (2,) — v, (2,1) (68)
Oy (2,t) = ¥z5 (2,t) — ul, (2,1) (6¢)

where 0: (z,t) and 8, (z,t) denote the rotations about
axes z and y, respectively, 7:; and ¥,, denote the
transverse shear strains in the planes zz and yz, re-
spectively, and primes denote derivatives with respect
to z. The quantities u, (z,t), v, (2,t) and u, (z,t) de-
noting the rigid-body translations along z, y and =z
axes, respectively, and 0:(z,t), 6y (z,t) and ¢(z,t)
denoting the rotations about z and y axes and the
twist about the z-axis, respectively, represent the un-
knowns of the problem.

Constitutive Equations

Consider the case of composite thin-walled beams
consisting of a finite number N of homogeneous lay-
ers. It is assumed that the material of each con-
stituent layer is linearly elastic and anisotropic and
that the bonding between the layers is perfect. The
three-dimensional constitutive equations for a gener-
ally orthotropic elastic material can be expressed in
the matrix form

Oss Qu Q2 Qs 0 0 Qs [¢n
sz Q2 Q2 Q2 0 0 Qx||ec:
Oan |_|Q3 Q3 Qaza 0 0 Qs||enn
Ozn 0 0 Qu Qs 0 ||7mn
Ons 0 0 0 Qu Qs 0 ([
Ous Qe Q6 Q3 0 0 Qedly,




where Q;; denote the transformed elastic coefficients
associated with the kth layer in the global coordinate
system of the structure and 9, = 2¢p,, p # T and €;;
denote the components of the strain tensor. The three-
dimensional dependence in Egs. (7) can be reduced
to an equivalent one-dimensional dependence in two
steps. The first step, yielding the two-dimensional
local constitutive equations, consists of the integration
of the original three-dimensional form through the
laminate thickness, while the second step, resulting in
the one-dimensional form, consists of the integration
of the previous form of constitutive equations along
the midline contour of the beam cross-section.

In light of i) and ii), and considering Egs. (5) and
(7), the local constitutive equations expressed in terms
of the strain measures can be shown to consist of the
equations for the stre§3 resultants

cu
[sz] _ [Kn Ki2 Kizs K| | @®
Ny, Ky Kz Kz Ko | ¢
€
the transverse shear stress resultant
Nin = Aga¥en (9)
and the equations for the stress couples
€.
[Lzz I:Kﬂ Kiy2 Kaz Kaa| |7
= (10)
Ly, Ksi Ksz Ksa Ksa] | ¢

622

where K;; denote the modified local stiffness coeffi-
cients (see Appendix). Consistent with Eqs. (5), the
strain components entering into the above constitutive
equations are €;, = €2, + ne?,, v,; = %, + 7,, and
Y:n, Where
0 —an! /
€::(s, 2,t) =wy + z(s, 2)6,
+y(s,2)0, — F(s,2)¢" (1lla)

€hi(s2,1) =0, =2 dy d’ —a(s, z)¢" (11b)
7,,(3 z,t) _.[uo +9y] + [vo +0,] (11¢)

Ac(z) ,
B(z)

, d dz |,
Yen(s, 2,t) =[u) +0y]d—i’ ~lp+0:17 (1)

Foa(s,2,t) =2—==¢ (11d)

in which €2, and €}, denote the axial strain compo-
nents associated with primary and secondary warp-
ing, respectively, ¥,; and ¥,, represent the tangential

shear strains in the mid-surface of the beam induced by
transverse shear and by the twist, respectively, and v,,
denotes the transverse shear strain component. The
stress resultants, the stress couples and the strain mea-
sures, Eqs. (8)-(10), exhibit a two-dimensional spatial
dependence, the dependence being on s and z. In the
dynamical problem, they also depend on time. More-
over, in light of the dependence of A, and § on z, the
stiffness coefficients K3, K23, K43, Ks3 depend on z,
as well.

The Boundary-Value Problem

The boundary-value problem, consisting of the
differential equations of motion and the boundary
conditions, can be derived conveniently by means
of the extended Hamilton’s principle,” which can be
stated as follows:

t3
/ (6T — 6V + W) dt =0,
t

Sug=8vp=6wo=60,=60,=60=0 at t=t,,t; (12)

where T is the kinetic energy, V the potential energy,
which is equal to the strain energy, and §W the virtual
work due to nonconservative forces. The kinetic energy
has the form

AL FE L ey
+ (b0 +2(s,2)8) + { (w0 +y(s,2)6.

+2(s,2)0, — Fu(s, z)é’) +n (%ﬁy

2
_Z_zé, - a(s, z)é')} ] dndsdz (13)

On the other hand, the strain energy can be shown to
have the expression

S

-Fu(s,2)¢" +n (ﬂe; EO’ - as, z)¢”>]

d
dy 2Ac(z) ,
ds B(2) 4’]

- (v} +62) ]}dndsdz (i4)

/ {agf) [w{, + z(s, 2)8, + y(s,2)8
h)

+o{®) [(uo+0 ) = + (vp +6:) ==
+ol¥) [(Uo + ﬂy)

Moreover, the virtual work of nonconservative forces
can be written as

L
W =/ (pybvo + m;6¢)dz (15)
0




where py and m; denote the lift force per unit length
and aerodynamic twist moment (positive nose up)
about the elastic axis.

Carrying out integrations with respect to n, s and
t, we can write -

t 1 1Y L
/ 6Tdt = — / / (I16uo + Ipévg + Isbwq
to 1o 0

L
+(Is - 1) 66 + Is66y + I766;) dz — Isd } dt (16)

0

where I; denote inertia terms (see Appendix), func-
tions of z and ¢t. Upon integration with respect to n
and s in Eq. (14), we can write the variation in the
potential energy -

L
5V = - / [T26wo + (M) — Q:) 60,
0

+ (M, — Qy) 66z + (B! + M) 6¢ + Q6uo
+Q;6vo] dz + [T 6wo + Myé8y + M:66: — B,6¢'

L
+ (B, + M;) 66 + Qzbuo + Qybvo] (17)
0
where
To(z.8) = f N,.ds (18a)

dz dy
Q:(Z,t) = % (Nu'g; + Nin—

ds
z

) ds (18b)
Qu(z,t) = f (Nu% - N,n%) ds (18¢)
M(z,t) = f (y(s, 2)N,; - L,,%) ds  (18d)
My(z,1) =f (r(s,Z)Nu + L;;%) (18e)
Mi(2,0) =2 § Nosd(2)ds (181)
Bu(z,t) = f [Fu(s,2)Nas + a(s, 2)Ls:]ds  (189)

In Egs. (18), T, Q= and Qy denote the axial force and
shear forces in the z- and y-directions, M., M, and
M, denote the moments about the z-, y- and z-axes,
respectively, and B, is the bimoment quantity. Sub-
stition of Egs. (15)-(17) into Eq. (12), followed by the
usual steps, results in the boundary-value problem for
the most general case of anisotropy. The boundary-
value problem consists of six differential equations of
motion with variable coefficients for the displacements
ug, Vg, Wo, 82,0y and &, together with the correspond-
ing boundary conditions. Such a set exhibits complete
coupling between the various modes, i.e., primary and
secondary warping, vertical and lateral bending, twist

and transverse shear. It is the principal goal of struc-
tural tailoring to select the appropriate fiber orienta-
tion so as to produce desired elastic couplings between
certain modes. For the problem at hand, the induced
elastic couplings must play a decisive role in enhanc-
ing the free vibration and aeroelastic response char-
acteristics of the wing structure. In this sense, the
bending-twist cross-coupling is the most significant in
the design of aircraft wings. The above criteria for
selecting fiber orientation, together with ease of im-
plementation in design and manufacturing, result in a
ply-angle distribution governed by

8(y) = —8(-v)- (19)

The ply-configuration is shown in Fig. 3. According
to terminology adopted in Refs. 8 and 9, structures
displaying this ply-angle distribution are referred to
as circumferentially asymmetric stiffness configuration
and symmetric configuration, respectively.

As a result of the ply-angle distribution, Eq. (19),
Hamilton’s principle, Eq. (12), yields two independent
boundary-value problems, referred to here as Problem
A and Problem B. Problem A is of eighth order and
involves the twist ¢, the vertical bending vo and the
vertical transverse shear f;. On the other hand,
Problem B is of sixth order and involves the extension
wp, the lateral bending ug and the lateral transverse
shear 6,. For cantilevered beams, boundary-value
Problem A is governed by the differential equations
of motion

— (agsd")" + (ar30l) + (a77¢') + 64m,
. w\!
= b (bt b)6— b (b +0i)d)  (200)
[ass (v, + 62)] + (a569")’ + 8apy = Sub1¥o  (200)
(axafl) + (a37¢") — ass(vy + 0z) — ased”
= 6y(ba + b14)d: (20¢)

to be satisfied over 0 < z < L. Moreover, at z = 0
the solution of Egs. (20) must satisfy the boundary
conditions

¢=0,vo=0,9,=0,£=0 (21a — d)

and at z = L it must satisfy the boundary conditions

— (a6s@") + arabl + arrd’ = =, (b10 + b1s)é' (220)
ass(v), +0) + aseg” =0 (22b)
azmf, +azr¢’ =0, aeed” =0 (22¢,d)

Note that the underlined terms in Egs. (20)-(22) are
due to the warping restraint effect. Moreover, to iden-
tify the two problems to be studied, namely, the free vi-
bration and the aeroelastic divergence instability, two




tracing quantities, 6, and &4, have been introduced in
Egs. (20)-(22). For Problem A, §, = 1 and 84 = 0,
whereas for Problem B, §; = 1 and §, = 0.

The boundary-value Problem B is governed by the
differential equations

(041“’/0), + [a4a(u;, + 9y)]' = by, (23a)
(anw)) + [a1a(u), +8,)]' = brtb, (23b)
(a228,)" = aarw) — aaa(ul, +6y) = (bs + bis)dy (23c)

and the boundary conditions

=0, we=0 6§,=0 (24a-c)
to be satisfied at z = 0, as well as the boundary
-

conditions

aq W, + aaq(uy, +6y) =0
anwf, + 014(!1:, + 0,,) =0 (25)
0229; =0

to be satisfied at z = L.

In the following, the study of the boundary-value
problem A governing the vibrational and aeroelastic
response behavior of wing structures will be carried
out. It should be mentioned here that the stiffness
terms ag7 = ars and ase = ags appearing in Eqs. (20)
and (22) are responsible for the coupling between
bending and twist, with the effect of ass expected
to be weaker than the effect of az7. The boundary-
value problem B involves only a single coupling term,
a14 = a41, coupling the lateral transverse shear and the
axial extension motions. The rigidity coefficients a;;
and the inertia coefficients b; appearing in Egs. (20),
(22), (23) and (25) are displayed in the Appendix.
With the exception of ay; and by, all the other rigidities
a;; and inertia coefficients b; depend on z.

Structural Tailoring for Improved Vibration
and Static Aeroelastic Instability Characteris-
tics

Static aeroelastic instability is an important fac-
tor in the design of modern aircraft. The analysis per-
formed here addresses the problem of designing the
wing so as to take advantage of structural couplings
from a static aeroelastic viewpoint. This is done by
using the unique directional properties of advanced
composite materials. The same importance should be
afforded to the vibrational characteristics, which are
basic to determining the dynamic response and flutter
instability and to actively controlling the wing struc-
ture.

In the case of free vibration, the terms associ-
ated with the external loadings are omitted, 64 = 0

and 6§, = 1, whereas for static aeroelastic problems,
the only loading terms to be retained are the ones
associated with the aerodynamic lift p, and the tor-
sional aerodynamic moment m,, amounting to §; =1
and 6, = 0. Using strip-theory aerodynamics, we can
write!®

Py(2) = gac(2)a, [0 + & — vo tan A] — NW/2L (25a)
m,(2) = gne(2)a.e(2) [¢o + ¢ — v, tan A]
+ gnc(2)>*Cpac — NWd/2L (25b)

where ¢, = 1pU2 denotes the dynamic pressure nor-
mal to the leading edge of the swept wing, ¢(z) the
chord of the wing, a, the “corrected lLift” curve slope co-
efficient, A the angle of sweep (considered positive for
swept-back), e(z) the offset between the aerodynamic
and reference axis, ¢, the rigid angle of attack (mea-
sured in planes normal to the leading edge), Camac the
wing section pitching moment coefficient (whose influ-
ence, as usual, is disregarded), W/2L the wing weight
per unit length and N the load factor normal to the
wing surface.

Due to the relatively high order of the problem
and the fact that the problem is characterized by vari-
able coefficients, the solution tends to be very complex.
Towards the goal of solving the two eigenvalue prob-
lems a powerful computational methodology based on
the extended Galerkin method was devised. For some
special cases, the solution accuracy was checked by
comparing the results with the exact ones obtained via
the Laplace transform method, devised by the same
authors, and the agreement was found to be excellent.
As a general remark, we observe from Egs. (25) that
for A < 0, i.e., for swept-forward wings, the aeroe-
lastic bending-twist coupling results in an increase in
py(z) and m,(z), which in turn reduces dramatically
the divergence speed.

The study of the static aeroelastic critical case
implies determination of divergence instability condi-
tions. The determination of the divergence speed leads
to the solution of an eigenvalue problem, where the di-
vergence speed plays the role of an eigenvalue. Struc-
tural tailoring applied to the vibration of wing struc-
tures must result in an increase in the eigenfrequencies
without weight penalties. The determination of nat-
ural frequencies requires the solution of an eigenvalue
problem as well.?

Uncoupled Cases for Divergence Instability

In two uncoupled cases, closed-form solutions for
the divergence instability can be obtained. They
correspond to a) pure bending divergence of swept
wings infinitely rigid in transverse shear and b) pure
torsional divergence. In the former case, eliminating
ass¢” from the Egs. (20b,c), assuming a very large




torsional stiffness, letting §; — —v, andé, =0, g =1
and implementing a Rayleigh-quotient procedure to
the resulting equation, the expression for the obtained
divergence speed can be shown to be

L
-2 /0 ass(z) (v")° dz

L
ao tanA/ e(2) (v?)' dz
[

(¢n)p = (26)

This equation reveals that only a swept-forward wing
(A — —A) can exhibit divergence instability in pure
bending. This result constitutes an extension to the
case of wings modeled as thin-walled beams of that
obtained in Ref. 3 for solid beams.

In the pure torsional case, assuming that the
bending stiffness is large and implementing a Rayleigh
quotient procedure in conjunction with Eq. (20a), one
obtains

(qn)D =4qp =

j2
a, / c(z)e(z)¢%dz
0

(27)

in which the underscored term is connected with the
warping inhibition. As in the case of solid beams,?
Eq. (27) reveals that pure torsional divergence can
occur for straight wings only.

From Eq. (26), we conclude that, to increase
as much as possible (¢n)p, the wing structure in
pure bending should be designed so that Kj4 — 0,
a condition resulting in an increase of the overall
bending stiffness aas.

Closed-Form  Solution for the Divergence of
Swept Forward Wings

Having the conditions corresponding to decoupled
divergence in bending and torsion, Eqs. (26) and (27),
respectively, a closed-form solution for the coupled
divergence of swept forward wings can be established.
Although approximate, for the case of solid beams,}
the solution was shown to provide results in excellent
agreement with the exact ones.

The solution for the divergence of swept forward
wings is based on a linear algebraic relationships of the
two decoupled expressions of the divergence instability.
The linear relationship yields the expression for the
divergence in the form

1 U

(gn)p = e’ S (28)

where

U=

h

s ase(2) (&9’ ¢\’
P onta (i) +47(5) |

1
/ CE#%dn (29a)
0
and
1 2
er UL ta.nA/ Cif;:_’—")dn
S= - 9 296
(077)3 1 dzvo 2 ( )
2as)n [ Asa(T2) dn
0 dn

In Egs. (29), Ass = 6es/ (ase)p, A77 = arr/(am7)g
and As; = ags/ (a33)g are normalized stiffness quan-
tities while C = ¢(z)/cgr and E = e(z)/eg denote the
normalized chord and distance between aerodynamic
line and reference axis, respectively. It should be men-
tioned that in Eqgs. (28), (29) the warping restraint
effect was included but the effect of transverse shear
flexibility was not. Equation (28) represents the coun-
terpart for thin-walled beams of the expression for the
divergence obtained in Ref. 3 for solid beams.

Numerical Results and Discussions

The wing structure, whose geometrical character-
istics are depicted in Fig. 1, is assumed to be made
of graphite-epoxy material with the following elastic
properties:

E; = 30 x 10° psi, Ey = E3 = 0.75 x 10° psi
G13 = Ga3 = 0.37 x 10° psi, G2 = 0.45 x 10° psi
P12 = poa = p13 = 0.25, p = 14.3 x 10° Ib sec?/in*

The eigenvalue problem was solved for a variety of
cases and the results are presented in the following.
Figures 3 and 4 show the first three eigenfrequencies
versus the ply angle for various values of the taper
ratio. Figures 5 and 6 display the first four uncoupled
eigenfrequencies versus the taper ratio for 6 = 0° and
6 = 90° and Fig. 7 presents the first four coupled
eigenfrequencies for § = 45°. Figures 8 and 9 show the
distribution of the normalized vertical displacement
and twist in the lowest three modes for § = 45° and
for different values of taper ratio. Figure 10 displays
the divergence speed versus the taper ratio for a swept
back wing with A = 5° and with ply angles § = 0° and
90°. Finally, Figs. 11 and 12 display the distribution
along the wing span of the normalized bending and
torsional stiffness. The figures reveal that the linear
variation along the span of the chord and height of the
cross-section profile induces a parabolic distribution
for these stiffness quantities.




In all the plots presented, the significant effects of
the taper ratio on the vibration and static aeroelastic
instability characteristics of aircraft wings have been
demonstrated. As shown, an increase in the taper
ratio results in a decay in the vibrational and static
aeroelastic properties of the wing structure. This
trend can-be reversed by implementation of tailoring
techniques. This amounts to proper selection of the
ply angle so as to reduce negative effects of wing taper.
Hence, tailoring permits exploitation of advantages
offered by wing taper.
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APPENDIX

The modified local stiffness coefficients are given
by

A? ApzA
Ky = Ay~ 'A—ll, K2 = Az - 'I—A?l-l—lg = K2
Ae(2) A12B12
Kiy=Bypy—--——=K
Kia(z) = 2K1a—— B() ' 22 ym a1
A2, Ad2)
Kop = Agg — =28 , Ka3(z) = 2Kq4
22 €~ 4, 33(2) = 2K2, ﬂ( )
K24 = st - ﬁJZI—B;IZ = K(g : (Al)
A(2) B?
Ka(z 2K Ky = Dgg — =12
43(2) = 2Kay—— B(z) 4 ko
_ BlsAm - BIGAIG
K5, = Bsg A Ks2 = Bgs "
Ac(z) By3Bs6
Ksa(z) = 2K5 , Kesg = Dog — ———

where A;j, Bj; and D;; denote local stretching,
stretching-bending coupling and bending rigidity
quantities, respectively. The dependence on the 2-
coordinate of various coefficients components Kj; is
indicated explicitly.

The inertia terms are as follows:
I(z)= j{ [0 - v(2)4] mods
L= ]4 [i+ 2(2)] mods
Is(2) f( [0 + 2(2)6, + () = Fuls, 2)d] mods,
14(2)= BI(e*a) + 1(:))6 = v(a)io + 2(s)in]mads

Is(z)= j‘{ [2(z)bo + 22(2)3,
+ 2(2)y(2)fz — z(2)F, (s, 2)¢')mods

dydy. dzdy. dy
+% ( 0 =20, — —a(s,z)¢’' | mads
dsds ¥ dsds ds (A2)

r(2) = $lu(a)in + 1 (2)o
+ 2(2)y(2)8y — y(z) Fu(s, 2)¢'}mods

dz dz dzdy -,
+f[£d—80 Toda 0 + aa(s,z)¢] mads

L(z)= }f [=F. (s, 2)ibo — 2(z) Fu(s, 2,
~ Y(2)Fu(s,2)f; + F(s,2)*¢')mods




dz - dy =
+f [Ea(s,z)ﬁz - a—;a(s,z)ﬂy
+a2(s,z)$’] mads

where -

(k=1)

N rthw )
(mo,mz) = Z/h p(k)(l,ﬂ )dﬂ (A3)
k=1

denote mass terms.

The rigidity coefficients have the form

d
aj; = fKnds, ara(z) = f [z(z)Kn +K14d—§] ds,
s d
ors(s) = § o1k > KiaS | ds
d d
(114(2) = legd—:ds, 015(2) = f Klgd—ids,
ajg(z) = —f [K11F,(s,2) + Kiaa(s, 2)] ds
017(z) = lea(Z)ds
ax(z) = ¢ |Kuz?(z) +2z(2)K dy + Kqq4====1ds
aze(z) = 1 147, s

a(z) = ]{ [Kuz(z)y(z)—-"-'(z)Ku%

dy dz dy
+y(2)Kua g = Kage ds] ds
dz dz d
ag4(z) = f G(:)anz + K“EH%) ds

d
azs(z) = / (Z(Z)Klza—g' + K24—d; Z;) ds

025(2) = - f [:z:(z)Kan(s, Z) + z(z)K14a(s, Z)
+F,(s, z)Kl.;% + K“a(s,z)%] ds

027(2) =f r:!:(Z)Ifl;;(z) + K43(z)%- ds

-

[ dz dz dz
a33(Z) = f .Kuy"’(z) -— 2y(Z)K14d—s <+ K44:1:E;] ds
[ dz dz dz]
azq(z) = f .y(z)Km—; - K24£E;- ds

. : (A.4)
d dz d
035(2) = f y(z)KuE!-sl- —‘Kud—s'a—g ds

azs(z) = — f [y(z) K11 F, + yKi4a(s, 2)

dz d
~Fu(s,2)Ku - K“a(s,z)-&-g] ds

ag(z) = }{ [y(z)Klg(z) - K43(z)%] ds

_ dz dr dy dy
a44(2) = f [Kn ds ds +Au ds ds] ds

_ dz dy dz dy
a4s(2) = f Kz dsds At ds ds] ds

dz d
as(z) = —fS [F‘,(s,z)KnE; + Kua(s,z)d—:] ds

aq7(2) =f TK”(Z)%] ds

[ dyd
055(2)-——% Kzza%a% +A

d d
[Fw(s, 2)Ky d—z + Ko4a(s, z)d—Z] ds

iiidz d
s ds s

ase(2) = —

e,

as7(2) =f Kza(z)%] ds

ass(z) = f [K11F2(s,2) + 2K14Fu (s, 2)a(s, 2)
+Kaua*(s,z)] ds
aer(z) = — }( [Kis(2)Fo(s, ) + Kas(2)a(s, )] ds

ar7(z) = 2%2 [‘;‘((:)) Kgs(Z)] ds

and note that the rigidity coefficients are symmetric,
aij = aji(i,7=1,2,...7).

Finally, the inertia coefficients are given by

[bl, 54(2), b5(z), blo(z)]
= fm, (1, ¥*(2), £%(2), F2(s,2)] ds
(B14(z), b15(2), brs(2)]

<o) (8) e

(A.5)
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Fig. 1a Top view of the tapered wing
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Fig. 2 The first eigenfrequency for various values
of taper ratio
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Fig. 3 The second eigenfrequency for various val-
ues of taper ratio
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Fig. 4 The third eigenfrequency for various values
of taper ratio
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Fig. 5 The first four eigenfrequencies versus the
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Fig. 6 The first four eigenfrequencies versus the

taper ratio for § = 90°
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Fig. 7 The first four coypled eigenfrequencies ver-
sus the taper ratio for # = 45°
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Fig. 8 The three lowest modes for § = 45° and for
various values of the taper ratio
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Fig. 9 The three lowest modes for 6 = 45° and for
various values of the taper ratio
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Fig. 10 The divergence speed versus the taper ratio

of a-swept-back wing (A =5°) for § = 0° .
and 90°
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Fig. 11 The normalized bending stiffness and mass

per unit span for § = 0* or 90° and for
various values of the taper ratio
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Fig. 12 The normalized torsional stiffness a77 and
of the polar mass per unit span for § =
0° or 90° and for various values of the taper
ratio




